
RESEARCH ARTICLE

A systematic literature review on the

applications of recurrent neural networks in

code clone research

Fahmi H. QuradaaID
1,2☯*, Sara Shahzad1☯, Rashad S. Almoqbily1,2☯

1 Department of Computer Science, University of Peshawar, Peshawar, Pakistan, 2 Department of

Computer Science, Aden Community College, Aden, Yemen

☯ These authors contributed equally to this work.

* qurada@uop.edu.pk

Abstract

Code clones, referring to code fragments that are either similar or identical and are copied

and pasted within software systems, have negative effects on both software quality and

maintenance. The objective of this work is to systematically review and analyze recurrent

neural network techniques used to detect code clones to shed light on the current tech-

niques and offer valuable knowledge to the research community. Upon applying the review

protocol, we have successfully identified 20 primary studies within this field from a total of

2099 studies. A deep investigation of these studies reveals that nine recurrent neural net-

work techniques have been utilized for code clone detection, with a notable preference for

LSTM techniques. These techniques have demonstrated their efficacy in detecting both

syntactic and semantic clones, often utilizing abstract syntax trees for source code repre-

sentation. Moreover, we observed that most studies applied evaluation metrics like F-score,

precision, and recall. Additionally, these studies frequently utilized datasets extracted from

open-source systems coded in Java and C programming languages. Notably, the Graph-

LSTM technique exhibited superior performance. PyTorch and TensorFlow emerged as

popular tools for implementing RNN models. To advance code clone detection research, fur-

ther exploration of techniques like parallel LSTM, sentence-level LSTM, and Tree-Struc-

tured GRU is imperative. In addition, more research is needed to investigate the capabilities

of the recurrent neural network techniques for identifying semantic clones across different

programming languages and binary codes. The development of standardized benchmarks

for languages like Python, Scratch, and C#, along with cross-language comparisons, is

essential. Therefore, the utilization of recurrent neural network techniques for clone identifi-

cation is a promising area that demands further research.

1. Introduction

Software bad smells point to potential issues within systems and have a detrimental impact on

software quality [1]. Among these issues, code clones, similar or identical fragments resulting

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 1 / 40

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Quradaa FH, Shahzad S, Almoqbily RS

(2024) A systematic literature review on the

applications of recurrent neural networks in code

clone research. PLoS ONE 19(2): e0296858.

https://doi.org/10.1371/journal.pone.0296858

Editor: Jacopo Soldani, University of Pisa, ITALY

Received: September 7, 2023

Accepted: December 20, 2023

Published: February 2, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0296858

Copyright: © 2024 Quradaa et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

file.

Funding: The author(s) received no specific

funding for this work.

https://orcid.org/0000-0001-7872-1877
https://doi.org/10.1371/journal.pone.0296858
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296858&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296858&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296858&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296858&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296858&domain=pdf&date_stamp=2024-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296858&domain=pdf&date_stamp=2024-02-02
https://doi.org/10.1371/journal.pone.0296858
https://doi.org/10.1371/journal.pone.0296858
http://creativecommons.org/licenses/by/4.0/

from copying and pasting existing code, stands out as a significant concern [2]. While code

cloning may accelerate the development process, it ultimately hampers software quality and

maintainability [3, 4]. This phenomenon leads to bug propagation, update irregularities,

inflated codebases, and compromised software architecture [5]. Consequently, the detection of

clones has emerged as a vibrant research field with encompassing a variety of techniques and

tools [6–9].

Recent breakthroughs in machine learning (ML), particularly within the domains of lan-

guage modeling [10], machine translation [11], speech recognition [12], and online handwrit-

ten [13], have sparked interest of researcher in leveraging ML algorithms for the detection of

both syntactic and semantic clones. A diverse array of techniques have been applied to learn

distinct patterns that distinguish clones from non-clones, even across different clone categories

[14, 15]. Deep learning (DL) techniques, like recurrent neural networks (RNNs), graph neural

networks (GNN), and others have proven effective in capturing both syntactic and semantic

clones [14]. The advancement of RNNs, as highlighted by Alex Graves [16], demonstrates

their proficiency as sequential learners capable of capturing features and long-term

dependencies.

Several systematic literature reviews (SLRs) have been carried out in the field of code clones.

Roy and Cordy [7] conducted a comprehensive survey of software clone detection techniques

up until 2006, covering definitions, types, benefits, drawbacks, and applications of code clone

detection. They categorized techniques into the following categories: text-based, token-based,

tree-based, graph-based, metrics-based, and hybrid. Notably, it excluded modern ML

approaches. Rattan et al. [6] explored various categories of clone types and emphasized the sig-

nificance of identifying semantic and model clones. However, they did not cover ML clone

detection techniques. Al-Shaaby et al. [17], Azeem et al. [3], and Al-Azba et al. [18] surveyed

ML and DL algorithms for code smells detection, but their primary focus was not on clone

detection or RNN techniques. Qurat et al. [8] reviewed clone detection techniques/tools span-

ning from 2013 to 2018, mentioning ML techniques used in clone detection but without in-

depth coverage of specific techniques. Likewise, Shobha et al. [9] discussed detection tech-

niques and emphasized the need for innovative methods capable of simultaneously identifying

all four types of clones. However, they did not explore the utilization of ML techniques for

detecting code clones. Maggie et al. [14] performed a systematic review of DL techniques for

detecting code clones. They reviewed recent DL techniques, analyzing their effectiveness, com-

plexity, and scalability, and addressing associated challenges and limitations. Kaur and Rattan

[15] presented a systematic review of ML techniques in code clone detection up to 2020, pro-

viding insights into clone types, metrics, datasets, code representation, and tools. Morteza

et al. [19] conducted a systematic review on code similarity measurement and clone detection,

offering insights into the current techniques, applications, and challenges. However, their

review did not specifically emphasize advancement in RNN in the field of code clone research.

This study aims to comprehensively review recent scientific research between 2015 and

2022 on detecting code clones using RNN techniques. We followed the established guidelines

outlined by Kitchenham and Charters [20], we extensively searched seven digital databases

with a predefined search string. Then, we applied a set of inclusion/exclusion criteria, along

with quality assessment criteria. Moreover, we utilized a snowballing process to identify any

relevant studies that might have been missed. The data extracted from the selected studies

were analyzed and compared based on several factors, including the types of RNN applica-

tions, the accuracy of techniques, the type of detected clones, techniques used for code repre-

sentation, and the datasets used.

We believe that the review’s findings are highly valuable for software developers, practition-

ers, and researchers in software clone analysis. They will acquire essential insights into

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 2 / 40

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0296858

prevalent RNN applications for clone detection, aiding developers in selecting optimal RNN

applications for their goals. The findings also shed light on the accuracy metrics used to evalu-

ate the models. Additionally, researchers can use these results as a valuable reference and iden-

tify new research challenges in clone detection using RNN applications. Moreover, The study

offers a detailed analysis of RNN applications in code clone detection.

The contributions of our systematic literature review (SLR) can be summarized as follows:

Firstly, it identifies and categorizes studies between 2015 and 2022 that use RNN techniques in

code clone detection. Secondly, it analyzes the selected studies to provide valuable information

to the research community regarding (1) the applied RNN techniques in clone detection

research, (2) the types of clones detected, (3) the evaluation metrics used to assess the perfor-

mance of these techniques, (4) the code representation techniques used, (5) the datasets used

in the experiments to train and test RNN models, and (6) the most frequently used tools to

building RNN models. Lastly, it offers recommendations and identifies significant gaps for

future research in this field.

The study is structured as follows: Section 2 provides a background on code clones and

recurrent neural networks (RNNs). Section 3 outlined the research methodology. Results are

presented in Section 4, and the research question are discussed in Section 5. Potential threats

to the validity of the study are noted in Section 6, and Section 7 concludes and suggests future

work.

2. Background

In this section, we present a brief background on code cloning and recurrent neural network

(RNN) techniques.

2.1 Code clones

Code clone detection techniques generally involve three key steps: (1) Code pre-processing,

which eliminates uninteresting items like header files, and comments; (2) Code representation,

where source code is transformed into an intermediate representation (e.g., AST, token

sequence, or PDG); and (3) Code similarity comparison: where code fragments similarity is

computed, leading to identification of code clones when this similarity exceeds a predefined

threshold.

Researchers often categorize code clones into four distinct types [6, 21]. The first three

types (Type-I, Type-II, and Type-III) primarily revolve around textual similarities, while the

fourth type (Type-IV) places a greater emphasis on functional or semantic resemblances.

Type-I clones encompass code fragments that are essentially identical, differing only in minor

aspects such as comments, formatting, and whitespaces. Type-II clones involve code fragments

that are syntactically identical, except for minor disparities in identifier names, variables, for-

matting, data types, and literals. In the case of Type-III clones, beyond the variations encoun-

tered in Type-II, the code fragments are syntactically equivalent with additional adjustments,

such as inclusion or omissions of statements. Contrastingly, Type-IV clones exhibit substantial

dissimilarities both in text and syntax while performing equivalent functionalities. Between

Type-III and Type-IV, there exists a range of clones that, despite retaining certain syntactic

resemblances, present significant challenges in their detection. These are often referred to as

clones in the Twilight zone [22]. Clones in Twilight zone are further classified into the follow-

ing subtypes: Very Strongly Type-III (syntactic similarity between 90% and less than 100%),

Strongly Type-III (syntactic similarity between 70% and less than 90%), Moderately Type-III

(syntactic similarity between 50% and less than 70%), and Weakly Type-III/Type-IV (syntactic

similarity of clone less than 50%).

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 3 / 40

https://doi.org/10.1371/journal.pone.0296858

2.2 Recurrent Neural Networks (RNNs)

RNNs techniques are used in a wide array of fields, including research in software code cloning

[23]. In this study, we classify RNN techniques for clone detection into three distinct categories:

traditional recurrent neural networks (TRNN), Long Short Term Memory (LSTM), and gated

recurrent units (GRU). Traditional RNNs are composed of two main types: original recurrent

neural networks (ORNNs) and bidirectional recurrent neural network (Bi-RNNs). ORNN

adapts the structure of feed-forward neural networks to handle variable-length sequences, utiliz-

ing self-connections to retain memory [23]. However, they encounter challenges like vanishing

and exploding gradient problems [24]. Bi-RNNs, introduced by Schuster and Paliwal [25], over-

comes these ORNNs limitations by incorporating two independently hidden layers that process

input sequences in both forward and backward directions. The LSTM category, known for its

effectiveness in mitigating vanishing gradients problems, incorporates memory cells and gates

to regulate data flow. Specific techniques within the LSTM category include original LSTM

(OLSTM) [26], Bidirectional LSTM (Bi-LSTM) [27], and Tree-LSTM [28]. OLSTM employs

input, output, and forget gates [29]. Bi-LSTM combines forward and backward LSTM layers for

enhanced performance [24, 27, 30]. Tree-LSTM processes structured input through tree-based

units, with Child-Sum Tree-LSTM designed for high branching factor trees, and Binary Tree-

LSTM suited for binary trees. Graph-LSTM [31] adapts the Tree-LSTM architecture for pro-

cessing graph data, incorporating syntax and semantics while preserving the original structures.

Nevertheless, LSTM architectures are significantly more complex in the hidden layer, resulting

in approximately four times more parameters than a simple RNN architecture [32]. In contrast,

the GRU category offers a simpler alternative to LSTM. It includes only two gating units to

address vanishing/exploding gradient problems in handling long-term dependencies. Unlike

LSTM’s three gating units, GRU uses reset and update gates. The GRU category offers two vari-

ations [33, 34]: original GRU (OGRU), which manages new inputs and state retention, while

Bidirectional GRU (Bi-GRU) employing two layers for forward-backward processing. This

results in faster training and improved information integration.

3. Review methodology

This systematic review aims to analyze the existing studies on the usage of RNNs in code clone

detection, in accordance with established guidelines and protocols defined by Kitchenham and

Charters [20, 35–37]. A systematic literature review (SLR) is a rigorous method for assessing

and interpreting relevant research [38–41], providing a strong foundation for making claims.

Unlike ad hoc reviews, SLRs require more effort [42]. The SLR process involves creating a

review protocol, conducting the review, reporting findings, and discussing results. Our review

protocol includes research questions, search strategies, criteria for inclusion/exclusion, quality

assessment, and data synthesis. Please refer to Fig 1 for an overview of PRISMA flow chart for

the selection process and Fig 2 for an overview of SLR steps.

3.1 Research questions

Defining essential research questions is vital for the review process. We have formulated spe-

cific questions aligned with our objective. Listed in Table 1 with their motivations.

3.2 Search strategy and study resources

We developed a search strategy to collect essential studies that address the review’s research

questions. This process involves identifying search terms, defining a global search string, and

selecting digital study resources to search through.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 4 / 40

https://doi.org/10.1371/journal.pone.0296858

3.2.1 Identifying search terms and defining global search string. In this step, we gener-

ated search terms for our research questions and created a search string. This string is used to

query online databases and collect relevant articles that address the research questions of the

review. The process comprises the following steps: Firstly, we identified the major terms from

the research questions. Then, we created a list of synonyms and alternative spellings for each

major term. To ensure accuracy, we cross-referenced this list with keywords in relevant papers.

Next, we linked each major term with its synonyms and alternative spellings using the Boolean

OR operator. Lastly, we refined the search by combining the major terms with the Boolean

AND operator. Applying these steps resulted in the following search string:

((("Recurrent neural network" OR "Bi- Recurrent neural network" OR "Long short term mem-
ory" OR *LSTMOR "Gated Recurrent Units" OR GRU) AND (code OR application OR soft-
ware) AND (copy OR clone OR cloning OR duplicat* OR similar*)).

Because of constraints in search terms and Boolean operators within specific digital librar-

ies (Science direct), we defined a shorter search string as follows:

Fig 1. PRISMA flow diagram outlining the study selection process.

https://doi.org/10.1371/journal.pone.0296858.g001

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 5 / 40

https://doi.org/10.1371/journal.pone.0296858.g001
https://doi.org/10.1371/journal.pone.0296858

Fig 2. Overview of systematic literature review.

https://doi.org/10.1371/journal.pone.0296858.g002

Table 1. Research questions and main motivations.

Research Question Main motivation

RQ1: What RNN techniques have been employed for

code clone detection?

The results assist practitioners and researchers in

identifying popular RNN techniques for code clone

detection and encourage exploration of unused

techniques.

RQ2: What types of clones are most frequently detected

using RNN techniques?

To identify code clones detected by RNN techniques,

researchers can explore less-studies clone types.

RQ3: What source code representation techniques have

been used in RNN applications?

Identifying source code representation techniques in

RNN can reveal commonly used and overlooked

techniques.

RQ4: What datasets were used in the selected studies? By examining dataset characteristics including their

name, type (commercial, student, open source),

availability (online availability), and language,

researchers can gain valuable insights for reusing or

creating datasets.

RQ5: What are the most commonly used tools for

building RNN models for clone detection?

To explore the tools used for implementing RNN models,

researchers can better select the most suitable tool to

meet their needs.

RQ6: What evaluation metrics are used to assess the

effectiveness of RNN models?

Identifying performance metrics for RNN models aids

researchers in choosing appropriate accuracy measures.

RQ7: Which RNN technique yields superior outcomes

when evaluated on the same dataset for the same

problem?

To compare and select the best RNN technique,

researchers can assess performance across various

studies.

https://doi.org/10.1371/journal.pone.0296858.t001

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 6 / 40

https://doi.org/10.1371/journal.pone.0296858.g002
https://doi.org/10.1371/journal.pone.0296858.t001
https://doi.org/10.1371/journal.pone.0296858

("Recurrent neural network" OR LSTM OR GRU) AND (code OR application OR software)
AND (clone OR duplicate OR similar))

3.2.2 Study resources. In order to increase the chances of finding highly relevant journal

and conference articles using our search string, we opted to use seven reputable online scien-

tific databases. These databases are renowned for publishing research on deep learning appli-

cations and code clone detection techniques. Additionally, Kitchenham et al. and Brereton

et al [35–37] endorse electronic database searches. Refer to Table 2 for the selected databases.

Furthermore, we conducted a snowballing process [43] to identify additional sources by

reviewing the references and citations of relevant studies. This approach expanded our selec-

tion and minimized the risk of overlooking any relevant articles.

3.3 Selection process

The SLR search initiates with separate searches in the digital libraries specified in Table 2,

employing the predefined search string as detailed in Section 3.2.1. Our database search was

performed using the advanced search functionality, which allowed us to refine our search

using different options, as shown in Table 3. Furthermore, we restricted publication date of

the included studies to fall between 2015 and 2022. The search process continued without date

restrictions until March 2023.

The Results of this search are presented in Table 3 and Fig 3, revealing a total of 2099 candi-

date/initial studies. However, a significant portion of these studies lacks pertinent information

needed to address the research questions. Consequently, the process of filtering out unquali-

fied studies becomes essential to identify the studies that are relevant to our objectives.

Before initiating the filtering process, we removed duplicate studies from the initial list of

potential candidate studies. During the sorting step, a total of 303 duplicate studies were

detected within the digital libraries and subsequently removed.

Table 2. Selected online databases.

Database Name URL

1 ACM Digital Library https://dl.acm.org/

2 IEEE Xplore Digital Library https://ieeexplore.ieee.org

3 Science Direct Library https://www.sciencedirect.com/

4 Scopus Digital Library https://www.Scopus.com/

5 Springer Link Digital Library https://link.springer.com/

6 Wiley Digital Library https://onlinelibrary.wiley.com/

7 World Scientific https://www.worldscientific.com/

https://doi.org/10.1371/journal.pone.0296858.t002

Table 3. Summary of search process from different digital libraries.

Digital Database Search String in Content type Subjects #studies

1 ACM Digital Library Abstract All sources All subjects 443

2 IEEE Xplore Digital Library Abstract All sources All subjects 397

3 Science Direct Digital Library Title,abstract,keywords All sources All subjects 93

4 Scopus Digital Library Abstract All sources All subjects 434

5 Springer Link Digital Library All Jour&conf Computer science 286

6 Wiley Digital Library Abstract All sources All subjects 377

7 World Scientific Abstract All sources All subjects 69

Total: 2,099

https://doi.org/10.1371/journal.pone.0296858.t003

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 7 / 40

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://www.scopus.com/
https://link.springer.com/
https://onlinelibrary.wiley.com/
https://www.worldscientific.com/
https://doi.org/10.1371/journal.pone.0296858.t002
https://doi.org/10.1371/journal.pone.0296858.t003
https://doi.org/10.1371/journal.pone.0296858

Two filtering rounds are performed to assess the relevance of candidate/initial studies on

the utilization of RNN techniques for code clones detection [44]. In the first round, two

authors independently evaluate the titles, abstracts, and keywords of each study, applying the

inclusion and exclusion criteria outlined in Section 3.3.1. Any disagreements among the

authors were addressed through discussions in meetings and subsequently resolved.

3.3.1 Inclusion and exclusion criteria. To be included in the SLR, studies must satisfy the

following inclusion criteria.

• All studies that have used any RNN technique and belong to the code clone detection

research area.

• Studies published in journals, conference proceedings, and workshops.

• Studies should be published in 2015 to 2022.

• Studies should be at least 6 pages long.

Conversely, the following exclusion criteria are applied to exclude unqualified studies from

the SLR:

• Any study within the code clone research area that does not use RNN techniques.

• Non-per-reviewed studies (e.g., those available on platforms like arXiv.org).

• Studies that are not written in English language.

• If a study is published in conference and journal then, the expanded version is chosen.

Fig 3. Study selection process.

https://doi.org/10.1371/journal.pone.0296858.g003

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 8 / 40

http://arXiv.org
https://doi.org/10.1371/journal.pone.0296858.g003
https://doi.org/10.1371/journal.pone.0296858

Following the first round of filtering, a total of 1747 studies were excluded, resulting in the

selection of only 49 studies, as shown in Fig 3. Subsequently, a snowballing process [43] was

conducted by examining the reference lists of these 49 relevant studies. These process led to

the discovery of 4 additional studies: 3 from IEEE and 1 from ACM, resulting in a total of 53

relevant studies. During the second filtering round, we examined the 53 relevant studies iden-

tified in the first round to identify those studies addressing our SLR research questions. We

comprehensively reviewed the full texts and applied the quality assessment criteria outlined in

Section 3.3.2.

3.3.2 Quality assessment criteria. In the second round, we establish a set of quality

assessment criteria that are aligned with our SLR objectives, which we used to evaluate the

quality of the selected studies. The specific criteria are detailed in Table 4, with some of them

being adapted from Dyba et al. [45] and Singh et al. [46].

We assess the quality of the selected studies through the approach detailed in references

[17, 45, 47]. Quality is evaluated with Yes, No, or Partially (inferred from text) responses,

scored as follows: Yes = 1, No = 0, and Partly = 0.5. The study’s overall quality is determined

by the sum of the scores from 12 questions. Studies scoring� 6 are selected, as outlined in ref-

erence [47]. Table 5 shows the final selected studies and their corresponding scores. During

this step, two authors conducted independent assessment of the selected studies. In case where

disagreements arose, they were addressed and resolved through discussions involving the third

author.

Both filtering rounds resulted in the selection of 20 studies. The details of these 20 studies

can be found in Table 6. Scores for quality assessment of the relevant studies are listed in

S1 Appendix.

For easy tracking, we assigned an ID to each study and marked it accordingly. The detailed

selection process is shown in Fig 3. Furthermore, we used Endnote software to manage and

gather studies throughout the search process.

3.4 Data extraction and synthesis

After identifying the appropriate studies, we proceeded to extract and document essential data

that relevant to our research questions. To facilitate this process, we developed a dedicated

data extraction template for capturing the study details. The data extraction template

employed for recording this information is outlined in Table 7.

Table 4. Quality assessment criteria.

Criterion Quality Questions Yes No Partly

Q1 Is the study using any RNN techniques?

Q2 Is the study discussing code clone detection?

Q3 Are the objectives of the study clearly stated?

Q4 Is the experiment’s design well-defined?

Q5 Is there a clear statement of findings?

Q6 Is there a detailed description of the study’s performance metrics?

Q7 Is the tool used to implement the RNN model reported?

Q8 Does the study compare the proposed work with other techniques?

Q9 Does the study clearly define the source code representation method?

Q10 Does the study address validity concerns or limitations?

Q11 Does the study mention the type of clone?

Q12 Is the dataset clearly and sufficiently described?

https://doi.org/10.1371/journal.pone.0296858.t004

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 9 / 40

https://doi.org/10.1371/journal.pone.0296858.t004
https://doi.org/10.1371/journal.pone.0296858

Table 5. Final selected studies and quality assessment scores.

ID Ref Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Score

S1 [48] 1 1 1 1 1 1 0 1 1 0 1 1 10

S2 [49] 1 1 1 1 1 1 1 1 1 1 1 1 12

S3 [50] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S4 [51] 1 1 1 1 1 1 1 0 1 0 0.5 1 9.5

S5 [52] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S6 [53] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S7 [4] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S8 [54] 1 1 1 1 1 1 1 0 1 1 1 1 11

S9 [55] 1 1 1 1 1 1 1 1 1 1 1 1 12

S10 [56] 1 1 1 1 1 1 0 1 1 1 0.5 1 10.5

S11 [57] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S12 [58] 1 1 1 1 1 1 1 1 1 1 1 1 12

S13 [59] 1 1 1 1 1 1 0 1 1 0 0.5 1 9.5

S14 [60] 1 1 1 1 1 1 1 0 1 0 1 1 10

S15 [61] 1 1 1 1 1 1 1 1 1 1 1 1 12

S16 [62] 1 1 1 1 1 1 1 1 1 0 0.5 1 10.5

S17 [63] 1 1 1 1 1 1 0 1 1 0 1 1 10

S18 [64] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S19 [31] 1 1 1 1 1 1 1 1 1 1 0.5 1 11.5

S20 [65] 1 1 1 1 1 1 1 1 1 0 0.5 1 10.5

https://doi.org/10.1371/journal.pone.0296858.t005

Table 6. The final selected studies.

ID Year Study Title Type Venue

S1 2020 A novel code stylometry-BASED code clone detection strategy Conference IWCMC

S2 2019 A novel neural source code representation based on abstract syntax tree Conference ICSE

S3 2021 Asteria Deep Learning-based AST-Encoding for Cross-platform Binary Code Similarity

Detection

Conference DSN

S4 2021 Bindeep A deep learning approach to binary code similarity detection Journal Expert Systems with Applications

S5 2022 Crolssim Cross-language software similarity detector using hybrid approach of LSA-based

AST-mdrep features and CNN-LSTM model

Journal Int. Journal of Intelligent Systems

S6 2019 Cross-Language Clone Detection by Learning Over Abstract Syntax Trees Conference MSR

S7 2016 Deep learning code fragments for code clone detection Conference ASE

S8 2018 Deep Learning Similarities from Different Representations of Source Code Conference MSR

S9 2021 FCCA Hybrid Code Representation for Functional Clone Detection Using Attention

Networks

Journal IEEE Transactions on Reliability

S10 2020 From Local to Global Semantic Clone Detection Conference DSA

S11 2021 Mulcode: A Multi-task Learning Approach for Source Code Understanding Conference SANER

S12 2020 Modular Tree Network for Source Code Representation Learning Journal ACM Transactions on Software Engineering

and Methodology

S13 2017 Plagiarism Detection in Programming Assignments Using Deep Features Conference ACPR

S14 2018 Positive and unlabeled learning for detecting software functional clones with adversarial

training

Conference IJCAI

S15 2020 SCDetector software functional clone detection based on semantic tokens analysis Conference ASE

S16 2020 Siamese-Based BiLSTM Network for Scratch Source Code Similarity Measuring Conference IWCMC

S17 2017 Supervised deep features for software functional clone detection by exploiting lexical and

syntactical information in source code

Conference IJCAI

S18 2021 VDSimilar Vulnerability detection based on code similarity of vulnerabilities and patches Journal Computers & Security

(Continued)

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 10 / 40

https://doi.org/10.1371/journal.pone.0296858.t005
https://www.sciencedirect.com/journal/expert-systems-with-applications
https://www.sciencedirect.com/journal/computers-and-security
https://doi.org/10.1371/journal.pone.0296858

The data extraction process involved the following steps: collecting bibliographic details

of studies, capturing key findings and techniques, and conducting a comprehensive analysis

to address research questions. All authors participated in this process. One author reviewed

each study, extracting and recording relevant data using a predefined template. Other

authors independently reviewed a random sample of studies and cross-verified the results.

In the case of any disagreements among the authors regarding results, consensus meetings

were held to resolve the issues. This process is similar to the methods used in prior studies

[17, 66–68].

After completing the data extraction, the extracted data is stored in a file for the next step.

Table 8 reveals that the final selected studies can address most of the research questions in this

Table 6. (Continued)

ID Year Study Title Type Venue

S19 2022 Hierarchical semantic-aware neural code representation Journal Journal of Systems & Software

S20 2021 Clone detection in 5G-enabled social IoT system using graph semantics and deep learning

model

Journal Int. Journal of Machine Learning and

Cybernetics

https://doi.org/10.1371/journal.pone.0296858.t006

Table 7. Data extraction template.

Item Description

Extractor name The researcher responsible for extracting the data.

Extraction date Date of extraction data.

Data checker [Name of the researcher] verified the extracted data.

Identifier Study identifier.

Database ACM/IEEE/Direct Science/Springer/Wiley/ Scopus/ World Scientific.

Title Title of the Study.

Tool/approach name Name of the proposed tool/approach. List the first authors if not available.

Author The authors of the study.

Venue Publication venue.

Year Publication year.

Reference type journal / conference/ workshop.

Study type Experimental/Case study/ survey/ algorithm.

RNN application used What type of RNN application has been applied in the study?

Classification type What type of classification is being used? binary/ multi-class classification

Training strategy What is the training strategy being used? (supervised, unsupervised, or semi-supervised)

Clone types &levels What types of code clones are detected by the proposed tool/approach, and at what level

are they identified? block-level/ method-level/ class-level.

Source code

representation

What technique is being employed for the source code representation?

Evaluation Metrics Which measures are employed to evaluate the model? Precision/ Recall/ F score/

AUC-ROC.

Availability Is the tool/approach available? If Yes provide the URL.

Development tool Which tool was used to construct the RNN model?

Dataset name Which datasets were utilized for training and testing the model?

Dataset size What is the size of the dataset?

Dataset Type What is the type of the dataset? commercial, student, open source

Language What programming language is used in the dataset?

Availability Is the dataset publically available? Provide URL if Yes.

Compared approaches What approaches were used to compare with the current work?

https://doi.org/10.1371/journal.pone.0296858.t007

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 11 / 40

https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://doi.org/10.1371/journal.pone.0296858.t006
https://doi.org/10.1371/journal.pone.0296858.t007
https://doi.org/10.1371/journal.pone.0296858

review, with the exception of eight studies (S1, S6, S7, S8, S10, S13, S14, and S17). Among

these studies, S1, S13, S14, and S17 lack information regarding RQ5 due to the absence of

details about the tools used for developing RNN models. Moreover, studies S6, S7, S8, and S10

do not cover RQ7 due to the lack of a comparative evaluation.

After extracting data from the selected studies, our primary aim during the data synthesis step

was to combine the collected information effectively to address our research questions. Given the

limited number of studies (only 20), and heterogeneous nature of the majority, the application of

meta-analysis is infeasible. Instead, we have opted for a descriptive synthesis analysis approach, as

outlined in reference [69], which was also utilized in other relevant studies [6, 14, 15, 17, 19].

4. Results

Prior to discussing the main results in line with our research questions, as outlined in Section

3.1, we will begin by summarizing the selected studies that fulfill the exclusion/inclusion crite-

ria and have passed the quality assessment.

4.1 Overview of the selected studies

This review have carefully selected 20 studies (displayed in Table 6) concentrating on code

clones detection through RNN techniques, spanning from 2015 to 2022. Table 9 shows the dis-

tribution of these 20 studies and their publication venues. Out of the 20 research studies, seven

were published in journals, while the remaining thirteen were published at international

conferences.

We obtained valuable insights from prestigious academic journals like IEEE Transactions

on Reliability, International Journal of Machine Learning and Cybernetics, and Expert Systems

with Applications. Additionally, we considered significant international conferences, includ-

ing the international conference on automated software engineering (ASE), Conference on

Pattern Recognition, and international conference on software analysis, evolution, and reengi-

neering. Fig 4 shows the distribution of studies spanning from 2015 to 2022. Notably, over

65% of these studies were published in 2020 and beyond, indicating a growing research focus

on utilizing RNNs for code clone detection in recent years.

Furthermore, we observed that around 65% of the selected studies were published in inter-

national conference proceedings, while the remaining 35% appearing in academic journals, as

depicted in Fig 5.

4.2 RQ1: What RNN techniques have been employed for code clone

detection?

Over the last decade, there has been a significant surge in DL applications within software

engineering [14, 15, 70]. The advancement of RNNs, as highlighted by Alex Graves [16],

Table 8. Selected studies and addressed research questions.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

RQ1
p p p p p p p p p p p p p p p p p p p p

RQ2
p p p p p p p p p p p p p p p p p p p p

RQ3
p p p p p p p p p p p p p p p p p p p p

RQ4
p p p p p p p p p p p p p p p p p p p p

RQ5 X
p p p p p p p p p p p

X X
p p

X
p p p

RQ6
p p p p p p p p p p p p p p p p p p p p

RQ7
p p p p p

X X X
p

X
p p p p p p p p p p

https://doi.org/10.1371/journal.pone.0296858.t008

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 12 / 40

https://doi.org/10.1371/journal.pone.0296858.t008
https://doi.org/10.1371/journal.pone.0296858

demonstrates their proficiency as sequential learners capable of capturing features and long-

term dependencies. RNNs techniques are used in a wide array of fields, including research in

software cloning. Our review identified the use of nine RNN techniques for detecting code

Table 9. The selected studies and their distribution across venues.

ID Type Digital Database Venue Year

S1 Conference IEEE IWCMC 2020

S2 Conference ACM & IEEE ICSE 2019

S3 Conference IEEE DSN 2021

S4 Journal Science Direct & Scopus Expert Systems with Applications 2021

S5 Journal Wiley Int. Journal of Intelligent Systems 2022

S6 Conference ACM & IEEE MSR 2019

S7 Conference IEEE & ACM ASE 2016

S8 Conference ACM & IEEE MSR 2018

90 Journal IEEE IEEE Transactions on Reliability 2021

S10 Conference IEEE DSA 2020

S11 Conference IEEE SANER 2021

S12 Journal ACM ACM Transactions on Software Engineering 2020

S13 Conference IEEE & Scopus ACPR 2017

S14 Conference ACM IJCAI 2018

S15 Conference ACM & IEEE ASE 2020

S16 Conference IEEE IWCMC 2020

S17 Conference ACM IJCAI 2017

S18 Journal Science Direct Computers & Security 2021

S19 Journal Science Direct Journal of Systems and Software 2022

S20 Journal Springer Link & Scopus Int. Journal of ML & Cybernetics 2021

https://doi.org/10.1371/journal.pone.0296858.t009

Fig 4. Number of selected studies based on publication years.

https://doi.org/10.1371/journal.pone.0296858.g004

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 13 / 40

https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://doi.org/10.1371/journal.pone.0296858.t009
https://doi.org/10.1371/journal.pone.0296858.g004
https://doi.org/10.1371/journal.pone.0296858

clones. Among the selected studies, twelve utilized a single RNN technique, while the rest com-

bined RNN with other DL techniques like CNN, RvNN, or GCNN. Study S9 used two RNN

techniques alongside GCNN. With the exception of Bi-RNN, Graph-LSTM, Original GRU,

and Bi-GRU techniques, most RNN techniques were appeared in multiple studies. For exam-

ple studies S1, S6, and S16 utilized the same RNN techniques, Bi-LSTM, while studies S12 and

S14 used identical techniques, specifically Child-Sum Tree-LSTM. Table 10 shows the RNN

technique used in the selected studies, and Fig 6 shows the frequency of their usage across the

selected studies.

Among the RNN techniques used in the 20 studies, the LSTM category was the most fre-

quently used, appearing in 14 of them (70%). It was followed by the TRNN category, which

was used in 4 studies (20%). In contrast, the GRU category was used less frequently, appearing

in only 2 of the 20 studies (10%). Fig 7 summarizes the RNN categories used across the selected

studies.

As observed, Fig 8 indicates a recent trend toward the adoption of RNN techniques in code

clone research. The application of RNN in this context emerged in 2016. From 2017 to 2022,

researchers predominantly focused on LSTM techniques, reaching their peak usage in 2020

and 2021, being used in 8 out of 11 studies. On the other hand, GRU techniques were used in

only two studies, one in 2019 and another in 2020.

4.3 RQ 2: What types of clones are most frequently detected using RNN

techniques?

To address this research question, we conducted an analysis of the clone types identified in the

selected studies, as well as the corresponding performance scores obtained for each clone type.

Fig 5. The distribution of selected studies across different venues.

https://doi.org/10.1371/journal.pone.0296858.g005

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 14 / 40

https://doi.org/10.1371/journal.pone.0296858.g005
https://doi.org/10.1371/journal.pone.0296858

Table 11 presents a comprehensive summary of performance scores obtained from the selected

studies concerning the detection of different clone types (encompassing Type-I through Type-

IV clones), along with the programming language they are associated with.

Based on our analysis presented in Fig 9, the majority of the selected studies (16 out of 20,

or 80%) concentrated on the detection of code clones within a single programming language.

In contrast, Only four studies (S3, S4, S5, and S6) (20%) delved into the detection of functional

clones and semantic clones, across diverse programming languages and platforms. This obser-

vation indicates a potential direction for future research. Additionally, it is worth noting that

only a small fraction of these studies (10%) of investigated the detection of Type-I to Type-III

clones. For instance, White et al. [4], S7, demonstrated the capability of DL in clone detection

and study S16 (Zhang et al. [62]), which detected similarities in Scratch code fragments. This

suggests that researchers in the remaining studies primarily concentrated on employing RNN

techniques to identify the most complex code clones, Type-I and Type-IV.

This underscore the effectiveness of RNNs in detecting the most challenging clones.

Table 10. Distribution of RNN techniques used in the selected studies.

RNN Category

TRNN LSTM GRU

Studies Original

RNN

Bi-

RNN

OriginalLSTM Bi-

LSTM

Binary Tree-

LSTM

Child-Sum Tree-

LSTM

Graph-

LSTM

Original

GRU

Bi-

GRU

Used RNN

Techniques

S1
p

1

S2
p

1

S3
p

1

S4+ p
1

S5+ p
1

S6
p

1

S7+ p
1

S8+ p
1

S9+* p p
2

S10+ p
1

S11+ p
1

S12
p

1

S13
p

1

S14
p

1

S15
p

1

S16
p

1

S17
p

1

S18+ p
1

S19
p

1

S20
p

1

RNN: Recurrent Neural Network; Bi-RNN: Bidirectional Recurrent Neural Network

LSTM: Long Short Term Memory; Bi-LSTM: Bidirectional Long Short Term Memory

Tree-LSTM: Tree Long Short Term Memory; Binary Tree-LSTM: Binary Tree Long

Short Term Memory; Child-Sum Tree-LSTM: Child-Sum Tree Long Short Term

Memory; Graph-LSTM: Graph Long Short Term Memory; GRU: Gated

Recurrent Units; Bi-GRU: Bidirectional Gated Recurrent Units

* indicates the study used different RNN techniques

+ indicates the study uses different DL techniques.

https://doi.org/10.1371/journal.pone.0296858.t010

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 15 / 40

https://doi.org/10.1371/journal.pone.0296858.t010
https://doi.org/10.1371/journal.pone.0296858

Fig 6. Analysis of the selected studies in terms of RNN techniques used.

https://doi.org/10.1371/journal.pone.0296858.g006

Fig 7. Analysis of the selected studies in terms of RNN categories used.

https://doi.org/10.1371/journal.pone.0296858.g007

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 16 / 40

https://doi.org/10.1371/journal.pone.0296858.g006
https://doi.org/10.1371/journal.pone.0296858.g007
https://doi.org/10.1371/journal.pone.0296858

Fig 8. The distribution of different RNN categories across years.

https://doi.org/10.1371/journal.pone.0296858.g008

Table 11. The selected studies and the detected clone types and their performance scores in terms of precision, recall, and F-score.

Study PL CL Precision Recall F1-score Description

T1 T2 VST3 ST3 MT3 WT3/4 T1 T2 VST3 ST3 MT3 WT3/4 T1 T2 VST3 ST3 MT3 WT3/

4

S1 C N - - 94 - - 82 - - 84 Focus on T3&T4 on OJC

S2 Java,C N 100 100 - 99.9 99.5 99.8 100 100 - 94.2 91.7 88.3 100 100 - 97 95.5 93.7 Focus on all Types BCB

S3 C Y(CP) Used AUC, TPR, and FPR to measure the effectiveness of the technique in detecting clones especially Type-IV clones Focus on T4 cross language.

S4 C Y(CP) - - - - - 96.54 - - - - - 97.25 - - - - - 96.89 Focus on T4 cross platforms.

S5 C++,Java,C# Y(CL) - - - - - 84 - - - - - 90 - - - - - 85 Focus on T4 cross language.

S6 Java,Python Y(CL) 19 90 - - - - - 32 Focus on T4 cross language.

S7 Java N Precision values at different levels are reported for 8 real-world Java systems, but clone-type-specific results are not shown Focus on T1&T2&T3

S8 Java N 89 82 74 67 88 84 75 18 88 83 75 29 Focus on all clone types

S9 Java N - - - - - - - - - - - - 1 1 95 98 Focus on T3&T4 on BCB

S10 Java N - - 86 - - 95 - - 91 Focus on T3&T4

S11 Java N - - - - - - - - - - - - - - 92.1 Focus on T3&T4

S12 C N - - - - - 88 - - - - - 98 - - - - - 93 Focus on T4 on OJC

S13 C N 84 94 88 Focus on T3&T4

S14 Java N 92 74 82 Focus on T3&T4 on BCB

S14 C N 47 73 57 Focus on T3&T4 on OJC

S15 Java N 81 87 82 Focus on T3&T4 on GCJ

S15 Java N 97 98 1 1 N 99 99 97 Focus on T3&T4 on BCB

S16 Scratch N 92 - 98 - 95 - Focus on T1&T2&T3

S17 Java N 92 74 100 100 - 94 88 81 Focus on T3&T4 on BCB

S17 C N - - - - - 47 - - - - - 73 - - - - - 57 Focus on T4 on OJC

S18 C N - - - - - 91.81 - - - - - - - - - - - 91.4 Focus on T4

S18 C N - - - - - 92.51 - - - - - - - - - - 91.1 Focus on T4

S19 Java N - - - - - 98.5 - - - - - 97.2 - - - - - 97.9 Focus on T4 on BCB

S19 C N - - - - - 99.4 - - - - - 99.2 - - - - - 99.4 Focus on T4 on OJC

S20 Java N Used Accuracy metric to evaluate Type-IV clone detection effectiveness. Focus on T4

CL: Cross language; PL: Programming Language; CL: Cross Language; CP: Cross Platform; T1: Type-I; T2: Type-II; T3:Type-III; T4: Type-IV; VST3: Very Stronger

Type-III; ST3: strong Type-III; MT3: Moderately Type-III; WT3/4: weakly Type-III/Type-IV; AUC: Area under curve; TPR: True Positive Rate; FPR: False positive Rate.

https://doi.org/10.1371/journal.pone.0296858.t011

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 17 / 40

https://doi.org/10.1371/journal.pone.0296858.g008
https://doi.org/10.1371/journal.pone.0296858.t011
https://doi.org/10.1371/journal.pone.0296858

Moreover, Fig 10 exclusively displays performance scores for detected Type-III and Type-

IV clones, known for their inherent identification complexity, as extracted from these studies.

Earlier studies (S6 and S8) exhibited comparatively lower performance in detecting Type-III

and Type-IV clones, as evidenced by lower F1-score, recall, and precision. In contrast, some

studies chose a more abstract reporting style, such as those observed in studies S3, S7, S13, S14,

and S16, where they presented only the final results without specifying the types of detected

clones, as listed in Table 11. Conversely, recent research endeavors (S2, S4, S9, S15, S16, S19,

and S20) have shown enhanced performance in identifying Type-III and Type-IV clones,

including strong Type-III, moderate Type-III, and weak Type-III/Type-IV clones. These

improvements were particularly evident in terms of precision, recall, and F1-scores. Among

these, S19 demonstrated the highest F1-score performance in the detection of Type-III and

Type-IV clones, surpassing its peers in both the BigCloneBench and OJClone benchmarks.

This underscores the efficacy of employing Recurrent Neural Networks (RNNs) in the domain

of clone detection.

4.4 RQ3: What source code representation techniques have been used in

RNN applications?

Effective code clone detection relies on code representation techniques, particularly in identi-

fying semantic clones [71]. Different source code representations are used to eliminate unin-

teresting items and enhance similarity among code fragments. These fragments can be

standardized by adjusting their identifiers, layouts, or statements. Alternatively, they can be

transformed into intermediate forms like token sequence, abstract syntax tree (AST), or con-

trol dependency graph (CDG) [72].

Fig 9. Analysis of the selected studies in terms of detected clone types.

https://doi.org/10.1371/journal.pone.0296858.g009

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 18 / 40

https://doi.org/10.1371/journal.pone.0296858.g009
https://doi.org/10.1371/journal.pone.0296858

To address this question, we analyze source code representation techniques in the selected

studies. Table 12 lists the techniques used in these studies. We observed that traditional tech-

niques were predominantly used to represent the source code. These techniques include AST,

token sequence, source code text, character sequence, control flow graph (CFG), and program

dependency graph (PDG). AST captures the syntactic knowledge of the source code, CFG

shows control flow along with its structural information, while PDG covers both control and

data flow. Bytecode/assembly instructions illustrate the low-level control flow.

Our findings indicate that the selected studies utilized either individual code representa-

tions techniques or combinations of representations techniques to improve clone detection,

particularly for clones in the "twilight zone" (Type-III and Type-IV clones) [22]. Among the

twenty studies, six (S1, S8, S9, S11, S15, S19) used combined source code representations,

while the remaining used individual representations, as detailed in Table 12.

Notably, in Fig 11, we observed that the AST was the most commonly used representation,

appearing in 13 studies (46%). Follow that, token sequences were used in 7 studies (25%) and

the CFG was used in 5 studies (18%). Other representations were used less frequently.

4.5 RQ4: What datasets were used in the selected studies?

This section provides an overview and analysis of the systems and benchmarks used to train

and evaluate RNN models. We have compiled a list containing 3 benchmarks, 41 open-source

systems, 9 commercial systems, and one student’s work, all of which were used in the selected

studies. Table 13 presents specific details from this compiled list.

Our observations indicate that in seventeen studies (85%), open-source systems and bench-

marks were used for dataset creation. Exceptions include study S3, which used both open-

Fig 10. Analysis the performance scores of the RNN-based clone detection techniques in detecting of Type-III and

Type-IV clones.

https://doi.org/10.1371/journal.pone.0296858.g010

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 19 / 40

https://doi.org/10.1371/journal.pone.0296858.g010
https://doi.org/10.1371/journal.pone.0296858

source and commercial systems, and study S13, which incorporated open-source systems

and student work. According to Fig 12, Java systems were the predominant choice, being

used in 44% of the studies, followed by C systems, which appeared in 32% of the studies.

The remaining systems, coded in languages like C++, C#, Python, and Scratch, were used in

24% of the studies. Notably, certain studies combined systems or benchmarks in different

languages to create their datasets; for example, study S2 used both the BigCloneBench (Java)

and OJClone (C).

In our findings, We observed that the selected studies used BigCloneBench [73], OJClone

[74], and GoogleCodeJam [75] as benchmarks, alongside datasets sourced from code reposito-

ries. BigCloneBench is derived from IJDataset 2.0, a repository housing 25,000 open-source

Java systems across 43 functionalities, encompassing 8,584,153 true clone pairs and 279,032

false pairs. OJClone, a widely used benchmark, identifies C program clones through solutions

submitted by student for 104 unique programming problems. GoogleCodeJam comprises pro-

grams from 12 competition problems in diverse languages, hosted by Google.

Furthermore, we observed that four studies (S2, S14, S17, S19) used BigCloneBench and

OJClonefor dataset creation, while three studies (S3, S5, S6) produced cross-language datasets.

The remaining studies used open-source repositories, as shown in Table 13.

Table 14 lists the publicly accessible datasets from studies, 60% of them being made

available.

Table 12. Source code representations techniques used in the selected studies.

Study Category Code Representation

AST Tokens* Text Character CFG PDG # count

S1 Bi-LSTM
p p

2

S2 Bi-GRU
p

1

S3 Bin Tree-LSTM
p

1

S4 Original LSTM
p

1

S5 Original LSTM
p

1

S6 Bi-LSTM
p

1

S7 Original RNN
p

1

S8 Original RNN
p p p

3

S9 Original LSTM
p p p

3

Bin Tree-LSTM

S10 Bi-RNN
p

1

S11 CS Tree-LSTM
p p

2

S12 CS Tree-LSTM
p

1

S13 OriginalLSTM
p

1

S14 CS Tree-LSTM
p

1

S15 Original GRU
p p

2

S16 Bi-LSTM
p

1

S17 Bin Tree-LSTM
p

1

S18 Bi-LSTM
p

1

S19 Graph-LSTM
p p

2

S20 Original RNN
p

1

*Tokens means a sequences of tokens extracted from the source code by using laxer techniques, sequence of identifiers or literals or constants extracted from AST (leaf

node) (e.g., S7),or sequence of bytecode or binary instructions extracted from compiled resources (e.g., S8, S4). Bin Tree-LSTM: Binary Tree-LSTM; CS Tree-LSTM:

Child-Sum Tree-LSTM

https://doi.org/10.1371/journal.pone.0296858.t012

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 20 / 40

https://doi.org/10.1371/journal.pone.0296858.t012
https://doi.org/10.1371/journal.pone.0296858

Fig 11. Analysis of the selected studies in terms of the code representation used.

https://doi.org/10.1371/journal.pone.0296858.g011

Table 13. Datasets (systems and benchmarks) used in the selected studies to train RNN models.

Dataset / Subject System Type Language Studies

OJClone* Open source C S1,S2,S12,S14, S17, S19

BigCloneBench* Open source Java S2,S9,S14,S15, S17, S19

GoogleCodeJam* Open source Java S15

Online judge system on CodingOJ Open source C S1

OpenSSL Open source C S3, S18

Buildroot (busybox, binutils) Open source C S3@

Firmware (NetGear, Schneider, Dlink, binwalk) Commercial - S3@

Coreutils, findutils, diffutils, sg3utils, util-linux Open source C S4

Antlr, Argouml, Hibernate, Jhotdraw Open source Java S7, S8

Apache Ant, Carol, Dnsjava Open source Java S7

Ant, Hadoop, Maven, Pmd, Tomcat, Qualitas.Class Corpus, Apache Commons Libraries Open source Java S8

Apache commons imaging, Apache commons math3, Catalano Framework,Colt,Weka(without gui) Open source Java S10

vmarkovtsev Open source Java S11

Linux Open source C S18, S13

ES file downloader, hangman, hangman 2, one cleaner, VPN master Commercial Java S20

GitHub repositories Open source C#, Java,C++ S5@, S6@

Apache Software Open source Java, Python S6@

Student submission Student C S13

Projects from Scratch official website Open source Scratch S16

*Indicates the benchmarks, @Indicates cross language study

https://doi.org/10.1371/journal.pone.0296858.t013

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 21 / 40

https://doi.org/10.1371/journal.pone.0296858.g011
https://doi.org/10.1371/journal.pone.0296858.t013
https://doi.org/10.1371/journal.pone.0296858

4.6 RQ5: What are the most commonly used tools for building RNN

models for clone detection?

To address this question, we explored the tools used for implementing RNN models in the

selected studies. Our findings reveal the utilization of six tools for implementing these models

across these studies. Table 15 presents a comprehensive list of tools, while Fig 13 provides an

analysis of the tools used in the selected studies.

Upon analysis, we observed that PyTorch emerged as the most frequently used tool for

implementing RNN models, featured in 7 out of 20 studies (35%). TensorFlow closely

Fig 12. Analysis of the selected studies in terms of dataset and programming languages used.

https://doi.org/10.1371/journal.pone.0296858.g012

Table 14. The available dataset created by the selected studies.

Studies Links

S2 https://github.com/zhangj1994/astnn

S3 https://github.com/Asteria-BCSD/Asteria

S6 https://www.csg.ci.i.u-tokyo.ac.jp/projects/clone/

S7 https://sites.google.com/site/deeplearningclone/

S8 https://github.com/micheletufano/AutoenCODE

S9 https://github.com/preesee/CodeCloneDetection

S11 https://github.com/src-d/datasets/tree/master/Duplicates

S14+S17 https://github.com/clonebench/BigCloneBench

http://programming.grids.cn

S15 https://github.com/SCDetector/SCDetector

S18 https://github.com /sunhao123456789/siamese_dataset

S19 https://github.com/YuanJiangGit/Code-Representation-Graph-LSTM

https://doi.org/10.1371/journal.pone.0296858.t014

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 22 / 40

https://doi.org/10.1371/journal.pone.0296858.g012
https://github.com/zhangj1994/astnn
https://github.com/Asteria-BCSD/Asteria
https://www.csg.ci.i.u-tokyo.ac.jp/projects/clone/
https://sites.google.com/site/deeplearningclone/
https://github.com/micheletufano/AutoenCODE
https://github.com/preesee/CodeCloneDetection
https://github.com/src-d/datasets/tree/master/Duplicates
https://github.com/clonebench/BigCloneBench
http://programming.grids.cn/
https://github.com/SCDetector/SCDetector
https://github.com/sunhao123456789/siamese_dataset
https://github.com/YuanJiangGit/Code-Representation-Graph-LSTM
https://doi.org/10.1371/journal.pone.0296858.t014
https://doi.org/10.1371/journal.pone.0296858

followed, appearing in 6 studies (30%), while Keras was used in 4 studies (20%). Additional

tools like RNNLM Toolkit, Matlab, and Weka, each found use in singular studies (S7, S8, and

S11, respectively).

Notably, certain studies (S1, S13, S14, and S17) omitted the specification of tools for their

implementations, while others (S4, S6, and S16) used both Keras and TensorFlow and study

S11 used Pytorch alongside Weka.

4.7 RQ6: What evaluation metrics are used to assess the effectiveness of

RNN models?

To explore this question, we investigated the evaluation metrics used in the selected studies to

measure the effectiveness of RNN models in detecting code clones.

In this review, various evaluation metrics were used in the selected studies to measure RNN

model performance in clone detection. Table 16 presents these studies and their corresponding

Table 15. Tools used in implementing the RNN models.

Tool S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Pytorch [76, 77]
p p p p p p p

Keras [78]
p p p p

TensorFlow [79]
p p p p p p

RNNLM [80]
p

Matlab
p

Weka [81]
p

Not mentioned
p p p p

https://doi.org/10.1371/journal.pone.0296858.t015

Fig 13. Analysis of the selected studies in terms of tools used for implementing RNN models.

https://doi.org/10.1371/journal.pone.0296858.g013

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 23 / 40

https://doi.org/10.1371/journal.pone.0296858.t015
https://doi.org/10.1371/journal.pone.0296858.g013
https://doi.org/10.1371/journal.pone.0296858

evaluation metrics, while Fig 14 illustrates the utilization of these metrics. Notably, 90% of the

selected studies (18 out of 20) used precision and F-score, while 16 studies (80%) used recall.

The majority of these studies used a combination of F-score, precision, and recall. Addition-

ally, Six of these studies (S4, S5, S11, S18, S19, S20) integrated accuracy as an evaluation metric.

Three studies (S3, S12, and S18) combined AUC-ROC metrics with other evaluation metrics.

The remaining metrics were comparatively less commonly used.

4.8 RQ7: Which RNN technique yields superior outcomes when evaluated

on the same dataset for the same problem?

Comparing and evaluating clone detection techniques presents challenges due to the diversity

of subject systems, benchmarks, and the absence of standardized similarity measures [6]. To

address this question, we have reported the results of selected studies that applied multiple

clone detection techniques to the same datasets or benchmarks and utilized consistent

Table 16. Performance evaluation metrics used in the selected studies.

Metrics S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Recall
p p p p p p p p p p p p p p p p

Accuracy
p p p p p p

Precision
p p p p p p p p p p p p p p p p p p

F- Score
p p p p p p p p p p p p p p p p p p

Sensitivity
p

AUC-ROC
p p p

FPR
p p p

FNR
p

Conf.Mat
p p

https://doi.org/10.1371/journal.pone.0296858.t016

Fig 14. The performance evaluation metrics in the selected studies.

https://doi.org/10.1371/journal.pone.0296858.g014

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 24 / 40

https://doi.org/10.1371/journal.pone.0296858.t016
https://doi.org/10.1371/journal.pone.0296858.g014
https://doi.org/10.1371/journal.pone.0296858

evaluation metrics. Our objective is to compare the performance of RNN techniques and

determine the top-performing techniques based on precision, recall, and F1-score evaluation

metrics.

Table 17 summarizes the performance summarizes the performance results from eight

studies (S1, S2, S9, S12, S14, S15, S17, S19) that used similar benchmarks, such as BigClone-

Bench, OJClone, and/or Google Code Jam benchmarks. The table provides a details account of

Table 17. Comparison of RNN techniques to detect clones on BigCloneBench, OJClone,and GCJ.

Study Methods Outcome Datasets

S1 Precision Recall F-Score OJClone

PBCS [48] 94% 82% 84%

SourcererCC [82] 44% 74% 16%

Deckard [83] 98% 25% 15%

S2 BigCloneBench OJClone BigCloneBenchOJClone

Precision Recall F-Score Precision Recall F-Score

ASTNN [49] 99.8% 88.4% 93.8% 98.9% 92.7% 95.5%

CDLH [63] 92% 74% 82% 47% 73% 57%

RAE+ [84] 76.4% 59.1% 66.6% 52.5% 68.3% 59.4%

S9 Precision Recall F-Score BigCloneBench

FCCA [55] 98% 97% 98%

Deckard [83] 93% 2% 3%

DLC [4] 95% 1% 1%

SourcererCC [82] 88% 2% 3%

CDLH [63] 92% 74% 82%

TBCNN [21] 90% 81% 85%

DEEPSIM [85] 97% 98% 98%

Precision Recall F-Score

MTN-a 84% 98% 90%

MTN-b 86% 98% 91%

MTN-a w/id 91% 98% 95%

MTN-B w/id 91% 99% 95%

Deckard [83] 60% 6% 0.11

S12 DLC [4] 0.7 18% 30% OJClone

SourcererCC [63] 97% 10% 18%

CDLH [63] 21% 97% 34%

CNN [86] 29% 43% 34%

LSTM 19% 95% 31%

Bi-LSTM 18% 97% 32%

Code-RNN [87] 26% 97% 41%

GGNN [88] 20% 98% 33%

Tree-LSTM [28] 27% 100% 43%

S14 BigCloneBench OJClone BigCloneBenchOJClone

Precision Recall F-Score Precision Recall F-Score

CDPU [60] 52% 50% 51% 19% 17% 18%

Deckard [83] 93% 2% 3% 99% 5% 10%

DLC [4] 95% 1% 1% 71% 0% 0%

SourcererCC [63] 88% 2% 3% 7% 74% 14%

C-DH [89] 70% 1% 1% 9% 23% 13%

CDLH [63] 81% 21% 33% 12% 18% 15%

(Continued)

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 25 / 40

https://doi.org/10.1371/journal.pone.0296858

Table 17. (Continued)

Study Methods Outcome Datasets

S15 BigCloneBench Google Code Jam GJC BigCloneBench

Precision Recall F-Score Precision Recall F-Score

SCDetector 97% 98% 98% 81% 87% 82%

SourcererCC 7% 98% 14% 43% 11% 17%

Deckard 6% 93% 12% 45% 44% 44%

DLC [4] 1% 95% 1% 20% 90% 33%

ASTNN [49] 94% 92% 93% - - -

BigCloneBench OJClone

Precision Recall F-Score Precision Recall F-Score

CDLH [63] 92% 74% 82% 47% 73% 57% BigCloneBench

S17 Deckard [83] 93% 2% 3% 99% 5% 10% OJClone

DLC [4] 95% 1% 1% 71% 0% 0%

SourcererCC [63] 88% 2% 1% 7% 74% 14%

BigCloneBench OJClone

Precision Recall F-Score Precision Recall F-Score

DFS 98.5% 97.2% 97.9% 99.4% 99.5% 99.4%

SourcererCC [63] 88% 2% 3% 7% 74% 14%

Deckard [83] 93% 2% 3% 99% 5% 10%

DLC [4] 95% 1% 1% 71% 0% 0% BigCloneBench

S19 CDLH [63] 92% 74% 82% 47% 73% 57% OJClone

FCCD [90] - - - 97% 95% 96%

ASTNN [49] 92% 94% 93% 99% 93% 96%

CodeBert [91] 94.7% 93.4% 94.1% 99.9% 96.1% 97.9%

GraphCodBert [92] 94.8% 95.2% 95% 100% 97.7% 98.8%

https://doi.org/10.1371/journal.pone.0296858.t017

Fig 15. Comparison of detection techniques based on RNN applications with BigCloneBench dataset.

https://doi.org/10.1371/journal.pone.0296858.g015

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 26 / 40

https://doi.org/10.1371/journal.pone.0296858.t017
https://doi.org/10.1371/journal.pone.0296858.g015
https://doi.org/10.1371/journal.pone.0296858

the code clones detection techniques evaluated across these studies, encompassing key evalua-

tion metrics (precision, recall, and F1-Score), as well as the subject systems under investiga-

tion. Furthermore, in Table 17, we can find studies in which an RNN-based technique was

compared against other clone detection techniques. Dong et al. [48] (S1) proposed the PBCS

technique, using Bi-LSTM to identify semantic similarity in students’ program assignments.

When compared to SourcererCC [82] and Deckard [83] using the OJClone dataset, the results

demonstrated PBCS’s superior performance. Jian et al. [49] (S2) proposed AST-based neural

network (ASTNN) to represent source code. This technique involves decomposing large

abstract syntax trees (ASTs) of code fragments into a sequence of smaller statement trees,

upon which they performed tree-based neural embeddings. In their work, they conducted a

comparative analysis of this approach with CDLH [63] and RAE+ [84], revealing that ASTNN

demonstrated superior performance when compared to other ML-based techniques for clone

detection. These results were consistent across the OJClone and BigCloneBench datasets. Wei

et al. [55] (S9) introduced the FCCA technique, a functional code clone detection technique

that leverages deep learning (LSTM, Tree-LSTM, and GCNN) and integrates diverse code fea-

tures, encompassing unstructured elements like token sequences and structured components

such as Abstract AST and CFG. The incorporation of an attention mechanism enhance detec-

tion accuracy by focusing on critical code segments and features. In a comparative study

against other techniques, including Deckard [83], DLC, SourcererCC [82], CDLH [63],

TBCNN [21], DEEPSIM [85], FCCA emerged as the superior performer in terms of recall, pre-

cision, and F1-score on the BigCloneBench dataset. DEEPSIM achieved a similar F1-score to

FCCA but with lower precision and higher recall. Wenhan et al. [58] (S12) proposed a novel

techniques for source code representation, referred to as the modular tree network (MTN).

Unlike previous neural network models based on tree structures, the modular tree network

refines the child-sum tree-LSTM’s basic structure and can effectively capture semantic distinc-

tions among various types of AST substructures. They conducted a comprehensive compari-

son with existing techniques, including Deckard [83], DLC [4], SourcererCC [82], CDLH [63],

CNN [86], LSTM, Bi-LSTM, Code-RNN [87], GGNN [89], and Tree-LSTM [28]. The results

demonstrate that the proposed technique outperforms other methods in terms of F1-score,

particularly on the OJClone dataset. Wei and Ming [60] (S14) introduced CDPU for identify-

ing functional clones using Siamese GRU. CDPU leverages adversarial training to distinguish

non-clone pairs that appear similar but behave differently. In comparisons with Deckard [83],

DLC [4], SourcererCC [82], CDLH [63], and C-DH [89] on the BigCloneBench and OJClone

benchmark, CDPU CDPU outperforms in F1-score and recall on both benchmarks but exhib-

its lower precision on BigCloneBench and OJClone. Yueming et al. [61] (S15) proposed SCDe-

tector, a novel method for detecting functional code clones that combines token-based and

graph-based techniques. They employed a siamese architecture neural network with GRU to

create a more accurate and efficient model. SCDetector was compared to other techniques,

including ASTNN [49], Deckard [83], DLC [4], and SourcererCC [82], on the Google Code

Jam and BigCloneBench benchmarks. Results showed that SCDetector outperformed other

methods on the BigCloneBench benchmark in F1-score, precision, and recall, and also per-

formed well on the Google Code Jam benchmark, despite having the second-highest recall.

Wei and Li [63] (S17) presented CDLH, a clone detection approach using tree-based LSTM to

identify semantic clones. CDLH was compared to Deckard [83], DLC [4], and SourcererCC

[82] on the BigCloneBench and OJClone benchmarks, with results indicating that CDLH’s

superior performance in terms of F1-score on both benchmarks. Ullah et al. [31] (S19) pro-

posed a technique for source code representation using a semantic graph to capture both syn-

tax and semantic features. Their study compared this technique to several others, including

Deckard [83], DLC [4], SourcererCC [82], CDLH [63], FCCD [90], ASTNN [49], CodeBert

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 27 / 40

https://doi.org/10.1371/journal.pone.0296858

[91], and GraphCodeBert [92]. The results indicate that their technique outperforms other

methods on the BigcloneBench and OJClone datasets in terms of F1-score and recall.

Figs 15 and 16 present a comparative analysis of studies employing RNN applications for

code clone detection on the BigCloneBench, and OJClone datasets. ASTNN [49] (S2) exhibited

exceptional precision, while SCDetector [61] (S15) achieved higher recall and F1-score when

compared to other clone detection approaches on the BigCloneBench dataset. On the other

hand, Ullah et al.’s DFS technique [31] (S19) showed strong performance on OJClone, excel-

ling in terms of precision, recall, and F1-score, closely followed by ASTNN [47]. Additionally,

the DFS technique [31] (S19) outperformed other techniques on both benchmarks in terms of

precision, recall, and F1-score, with ASTNN [47] as the next best performer. Conversely,

CDPU [60] (S14) and PBCS [48] (S1) exhibited the lowest performance in precision, recall,

and F1-score on both benchmarks when compared to other techniques.

The mean F1-Score values presented in Table 18 and depicted in Fig 17 offers valuable

insights into the progress achieved in RNN techniques for clone detection.

Fig 16. Comparison of detection techniques based on RNN applications with OJClone dataset.

https://doi.org/10.1371/journal.pone.0296858.g016

Table 18. Average of F1-score across years.

Year F1-Score Average

2016 -(S7) -

2017 89 (S13), 82 (S17 on BCB), 57 (S17 on OJC) 76

2018 96 (S8), 85 (S8), 51 (S14 on BCB), 18 (S14 on OJC) 62.5

2019 93.8 (S2 on BCB), 95.5 (S2 on OJC), 32 (S6) 73.77

2020 84 (S1 on OJC), 91 (S10), 92.75 (S12 on OJC), 98 (S15 on BCB), 82 (S15 on GCJ), 95 (S16) 90.46

2021 -(S3), 97.97 (S4), 98 (S9 on BCB), 92.1 (S11), 91.4 (S18 on Openssl), 91.1 (S18 on Linux), 96.2 (S20) 94.41

2022 85 (S5), 97.9 (S19 on BCB), 99.4 (S19 on JOC) 94.10

https://doi.org/10.1371/journal.pone.0296858.t018

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 28 / 40

https://doi.org/10.1371/journal.pone.0296858.g016
https://doi.org/10.1371/journal.pone.0296858.t018
https://doi.org/10.1371/journal.pone.0296858

Fig 17 demonstrates a notable improvement in performance over time, indicating the effec-

tiveness of these techniques. The relatively lower F-Score values observed in 2017 and 2018

can be attributed to the early stage of development for deep learning techniques in this

domain.

Tables 17 reveals the significance of the works by Wei and Ming [63] (S17), White et al. [4]

(S7), and Hua et al. [55] (S9) in clone detection, as they were frequently benchmarked against

other techniques. However, four studies (S6, S7, S8, S10) did not include comparative evalua-

tions. Furthermore, the selected studies compared their techniques with traditional methods,

with Deckard and SourcererCC being the most commonly utilized traditional techniques of

comparison.

We have observed that eleven studies (S1, S3, S4, S6, S9, S12, S13, S15, S16, S17, S18)

employed a Siamese architecture to improve the performance of RNN model. This architec-

ture has gained popularity in facial recognition tasks and various NLP applications, including

sentence similarity assessment [93, 94].

In the context of validating techniques used in the selected studies, two validation configu-

rations were used. Table 19 presents these techniques and their usage in the selected studies.

The findings indicate that 13 studies (65%) applied percentage-based split validation, while 4

studies (20%) opted for K-fold cross-validation. However, in three studies (S7, S14, S17)

(15%), the specific validation techniques used were not specified.

Fig 17. Average F-score across years.

https://doi.org/10.1371/journal.pone.0296858.g017

Table 19. Validation of learning techniques in the selected studies.

Validation Technique Studies

K-fold cross-validation S8, S9, S13, S18

Percentage-Based Split S1,S2,S3,S4,S5,S6, S10,S11, S12, S15, S16, S19, S20

Not mentions S7,S14, S17

https://doi.org/10.1371/journal.pone.0296858.t019

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 29 / 40

https://doi.org/10.1371/journal.pone.0296858.g017
https://doi.org/10.1371/journal.pone.0296858.t019
https://doi.org/10.1371/journal.pone.0296858

The choice of validation techniques, whether through the application of percentage-based

training and testing sets or the adoption of k-fold cross-validation, depends on various factors,

including the dataset size used for training and testing machine learning models.

Deep learning techniques require large datasets for effective training and achieving optimal

results [95]. Notably, the majority of the selected studies (65%) prefer percentage-based data

splitting, randomly dividing the dataset into training, validation, and testing sets, due to their

substantial dataset size and the simplicity of this technique. However, it is important to recog-

nize that the inherent randomness in creating these subsets can significantly impact the predic-

tive model’s performance [96].

In the K-fold cross-validation, the dataset is randomly partitioned into k equally sized sub-

sets or folds. From these k subsets, one is designated as a test set, while the remaining k-1 sub-

sets are used for training the model. This process is then repeated k times, ensuring that each

of the k subsets is employed as the test set exactly once. However, it is important to note that

running K-fold cross-validation multiple times increases the computational cost and time, as it

necessitates training and testing the model K times. This can become particularly resource-

intensive for large datasets or complex models [97]. Consequently, some studies opt for alter-

native validation techniques, which may explain why only four studies in this context have

chosen to use the K-fold cross-validation technique.

5. Discussion

In this paper, we investigate various studies to determine the extent of research conducted in

the field of code clones using RNN techniques. This section presents the main findings of our

work, based on the research questions we posed, along with recommendations for future

research that may be of interest to the research community.

RQ1: We conducted an extensive search across various sources, including ScienceDirect

Digital Library, Scopus Digital Library, and IEEE Xplore Digital Library, and identified 20

studies that utilized RNN techniques for detecting code clones. for further details, please refer

to Table 6 and Fig 4.

Our findings reveal that nine RNN techniques were used to identify code clones, catego-

rized as TRNN, LSTM, and GRU. Among these, the LSTM category was the most frequently

used (70%), followed by TRNN (20%) and GRU (10%). Additional details can be found in

Table 10 and Figs 6 and 7.

Among the 20 reviewed studies, only S9 utilized multiple RNN techniques, specifically

OLSTM and Binary Tree-LSTM. None of the studies integrated RNN techniques from differ-

ent categories, highlighting the limited utilization of diverse RNN techniques for code clone

detection. Consequently, further research is required to explore the efficacy of combining dif-

ferent RNN techniques for this purpose.

Traditional RNNs encounter challenges with gradients that hinder their ability to learn

long-term dependency [98, 99]. To address this issue, Hochreiter and Schmidhuber [26]

devised LSTM, which incorporates a memory cell for extended state retention. However, the

use of LSTM can lead to training delays [60, 100]. To mitigate this, Bouaziz et al. [101] pro-

posed a solution in the form of parallel LSTM, enabling concurrent stream processing. Fur-

thermore, the sentence-level LSTM [102] enhances LSTM performance in NLP tasks by

facilitating parallel operations and improving the extraction of complex information from text.

Interestingly, despite the demonstrated superior performance of parallel LSTM and sentence-

level LSTMs in NLP tasks [103, 104], none of the reviewed studies employed parallel LSTM or

sentence-level LSTM for code clone detection. Therefore, further research is needed to investi-

gate the applicability of these LSTM techniques to code clone detection.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 30 / 40

https://doi.org/10.1371/journal.pone.0296858

Furthermore, Marcin et al. [105] introduce a less complex Tree-Structured Gated Recurrent

Unit (GRU) architecture compared to the prominent Tree-Structure LSTM model used in sen-

timent analysis. Despite this, no prior exploration has been conducted on the potential of the

Tree-Structure GRU’s for detecting code clones. Consequently, additional research is neces-

sary to investigate its capabilities in identifying code clones.

RQ2: Code clones are categorized as syntactic (Type-I, Type-II, and Type-III), and semantic

(Type-IV) [7]. Our findings indicate that most of the selected studies concentrated on identify-

ing semantic clones within code written in a single programming language. Only four studies

(S3, S4, S5, and S6) examined detection across different languages, or platforms. Therefore,

additional research is required to investigate how RNN techniques can identify semantic

clones across different programming languages and platforms. Additionally, our findings indi-

cate that only two studies (S3, S4) used RNN techniques to detect semantic similarities among

binary code fragments. This highlights the need for further research in this vital area, given its

significance in security applications like vulnerability discovery and malware analysis [50].

RQ3: The performance of DL models is notably influenced by the selected code representa-

tion [71]. Specifically, the accuracy of DL models, including RNNs models, heavily relies on

the specific code representation used [71, 72]. Table 12 shows that the dominant code repre-

sentation in the selected studies is the AST, while only two studies (S4 and S8) using lower-

level representations like assembly code and Bytecode instructions.

Compilation and decompilation techniques normalize code structures by transforming

syntactically different but semantically similar structures into a consistent binary form [72,

106, 107]. Therefore, we suggest harnessing RNN techniques to identify semantic clones

through lower-level representations, like three-address code, Bytecode/Assembly instructions,

or integrate both higher and lower-level code representations.

While existing research extensively examines code clone identification within single pro-

gramming languages, limited attention has been given to detecting clones across multiple lan-

guages. With the increasing prevalence of multi-language software development in major

applications like twitter, Uber, and Netflix, the demand for cross-language clone detection is

growing. Notably, only two studies (S6 and S5) have utilized RNN techniques for detecting

clone across language, using AST representations to capture significant features. Nevertheless,

further investigation is needed to effectively leverage RNN techniques for detecting code

clones across languages, using different code representation techniques.

It is well-established that effective code clone detection relies heavily on code representation

techniques, particularly in the context of identifying semantic clones [71]. Consequently, this

observation opens up opportunities for further and more comprehensive research, with a par-

ticular emphasis on the thorough examination of code representation techniques in the con-

text of machine learning and deep learning techniques across various research domains.

RQ4: Based on our research findings, the majority of selected studies focused on subject

systems coded in Java and C programming language. This choice was driven by the availability

of benchmarks like BigCloneBench, GoogleCodeJam, and OJClone.

BigCloneBench benchmark, offering a large-sized dataset and support for a wider range of

functionalities (43 in total), is superior for Java clone datasets compared to GoogleCodeJam. It

provides a significant advantage, as it contains a substantial proportion (98%) of semantic

clones. On the other hand, among the selected studies that focused on the C programming lan-

guage, OJClone stood out as the sole publicly available benchmark. Consequently, there is a

need for research to create new benchmarks for programming language like Python, Scratch,

and C# to advance the research on detecting clones within these languages.

Additionally, we noted two studies (S5 and S6) that proposed techniques for detecting

semantic clones across multiple programming languages, specifically Java, C#, C++, and

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 31 / 40

https://doi.org/10.1371/journal.pone.0296858

Python. These studies created their datasets from GitHub repositories and Apache Software.

However, the absence of validated benchmarks hinders the assessment of their effectiveness.

Therefore, additional research is necessary to create dependable benchmarks for evaluating

studies on cross-language semantic clone.

In recent years, numerous studies have addressed detecting Java code clones using the Big-

CloneBench benchmark. Certain Java clone detectors concentrate exclusively on Bytecode-

level clone, neglecting Java source code. To address this limitation, Schafer et al. [108] intro-

duced Stubber, a tool that compiles Java source code into Bytecode without dependencies.

This advancement allowed Bytecode-based clone detectors to be evaluated on BigCloneBench

for more than 95% of Java source files. Therefore, Additional research is necessary to establish

benchmarks for evaluating the efficacy of binary code-level clone detection techniques.

Furthermore, We observed that most selected studies used open-source for datasets, with

the exception of two studies (S3 and S20) which utilized commercial software. It’s important

to note that clones could be present within commercial software. Therefore, there is a need to

broaden research in this domain to include commercial applications.

RQ5: Our analysis showed that among the six tools used to build RNN models in the

selected studies (as detailed in Table 15 and Fig 13), Pytorch and TensorFlow were the most

common, being used in 55% of the studies. This prevalence can be attributed to their estab-

lished recognition, open-source nature [76, 77, 79], and widespread adoption for neural net-

works [109]. Researchers have a promising opportunity to enhance code clone detection by

considering alternative frameworks with high rankings for implementing DL models, such as

MXNet [110] and Theano [111].

RQ6: Our findings highlight that the prevalent evaluation metrics for the selected studies

include precision, recall, F1-score, accuracy, and AUC-ROC. However, it’s crucial to acknowl-

edge that relying solely on threshold-dependent metrics might introduce bias in interpreting

ML model performance [96]. To address this, incorporating threshold-independent metrics

like Matthew’s Correlation Coefficient (MCC) [112] and/or the Area Under the ROC Curve

[113] is recommended. Moreover, it should be noted that evaluating studies with BigClone-

Bench may result in different recall values due to incomplete labeling. Furthermore, some

studies employ non-universal precision evaluation metrics, requiring manual validation of all

clones. Thus, a comprehensive evaluation of existing RNN code clone prediction models is

imperative.

RQ7: Most of the selected studies commonly use BigCloneBench and OJCloneasas bench-

marks for assessing semantic clone detection techniques. These studies consistently exhibit

enhanced performance on the BigcloneBench and/or OJClone datasets.

Based on the data in Table 17 and Figs 15 and 16, which provide a comparative analysis of

studies employing RNN applications for code clone detection on the BigCloneBench, and

OJClone datasets, we clearly observed that ASTNN [49] (S2) demonstrated exceptional preci-

sion at 99.8%, while SCDetector [61] (S15) achieved higher recall and F1-score when com-

pared to other clone detection approaches on the BigCloneBench dataset, reaching 98% for

both metrics. On the other hand, Ullah et al.’s DFS technique [31] (S19) exhibited strong per-

formance on OJClone, boasting impressive precision, recall, and F1-score values of 99.4%,

99.5%, and 99.4%, respectively, closely followed by ASTNN [47] with precision, recall, and

F1-score at 98.9%, 92.7%, and 95.5%. Additionally, the DFS technique [31] (S19) outperformed

other techniques on both benchmarks in terms of precision, recall, and F1-score, with ASTNN

[47] as the next best performer. Conversely, CDPU [60] (S14) and PBCS [48] (S1) displayed

the lowest performance in precision, recall, and F1-score on both benchmarks when compared

to other techniques.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 32 / 40

https://doi.org/10.1371/journal.pone.0296858

Furthermore, we have found that studies (S3, S4, S5, and S6) propose cross-platform

semantic similarity detection techniques. Specifically, studies (S5 and S6) introduce RNN-

based techniques to identify analogous code fragments across different languages. In contrast,

study (S4) focuses on detecting binary code similarity across varied architectures, compilers,

or optimizations. Additionally, study (S3) presents an innovative RNN-based technique for

detecting binary similarity across platforms. Notably, it is worth noting that cross-language

models exhibit relatively poorer performance compared to single-language models [14],

highlighting the necessity for further research in this domain.

In the context of validating deep learning techniques used in the selected studies, it is

important to recognize that the inherent randomness in dataset creation can significantly

impact the performance of predictive models. To address this, we strongly recommend follow-

ing the guidelines outlined by Hall et al. [96] to ensure the robust design of empirical investiga-

tions. Particular attention should be given to the use of threshold-independent metrics and the

implementation of preprocessing techniques such as feature selection and data balancing to

enhance the setup of deep learning models. Furthermore, our observations highlight the

importance of using manually validated datasets that effectively capture code clones within

code fragments.

6. Threats to validity

This section highlights various potential threats that could impact the validity of this SLR,

despite the authors’ efforts to implement a rigorous methodology to ensure accurate findings.

A significant threat involves the challenge of identifying all relevant studies, a common

issue encountered in systematic literature reviews [20, 114]. There is a possibility that certain

studies focusing on RNN techniques in code clone analysis might have been unintentionally

missed. To mitigate this threat, we implemented a strategy that entailed the selection of seven

widely acknowledged research databases: Science Direct, Springer, ACM, Scopus, IEEE,

Willey, and World Scientific. Additionally, we conducted a snowballing process by examining

the references of selected studies and incorporating relevant studies.

Another threat revolves around the formulation of an effective and comprehensive set of

search terms. To address this concern, we developed a comprehensive search strategy. This

strategy involved extracting keywords from the research questions, identifying synonyms or

alternative spellings, and confirming their presence in related studies.

To reduce the risk of including irrelevant studies or unintentionally excluding relevant

ones during the study selection phase, we implemented a two-step process. Initially, two

authors independently applied the inclusion and exclusion criteria to filter out irrelevant stud-

ies. In cases of disagreement, discussions among the authors were conducted to resolve any

discrepancies.

Potential threats also arise during the phase of quality assessment and data extraction. To

mitigate these risks, we executed a formal procedure encompassing the creation of a set of rig-

orous quality assessment criteria and a comprehensive data extraction form. The assessment

of study quality was conducted independently by two authors. After that, third author inde-

pendently selected a separate set of studies through a randomized process and conducted a

double-checked of the selection process, any disagreements among authors were addressed

and resolve. Following this, a single author meticulously reviewed each study, extracting and

documenting relevant information using a predefine template. In addition, other authors inde-

pendently examined a randomized selection of studies, engaging in a meticulous cross-verifi-

cation process to ensure the accuracy of results. Any differences among authors were

addressed through to reach at a consensus.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 33 / 40

https://doi.org/10.1371/journal.pone.0296858

7. Conclusion

This study reports findings from a systematic literature review (SLR) that investigates the utili-

zation of RNN techniques for code clone detection. The review involved comprehensive

searches across seven online databases to identify relevant studies. Ultimately, twenty studies

published between 2015–2022 were selected to address the research objectives. These selected

studies were grouped into three categories: Traditional recurrent neural network (TRNN),

long short-term memory (LSTM), and gate recurrent unit (GRU). Each category encapsulating

distinct techniques. Research questions were formulated to explore the current state of RNN

techniques in clone research from various perspectives, including the specific RNN techniques

used, types of detected clones, code representation techniques, evaluation metrics, popular

datasets, studies achieving better results when compared to alternative approaches, and preva-

lent tools for implementing RNN models.

The results indicate that among the RNN techniques, the LSTM variations like OLSTM, Bi-

LSTM, Binary Tree-LSTM, and Child-Sum Tree-LSTM, are most commonly used. Further-

more, the AST is the prevalent code representation technique, used in 13 studies. Our review

also reveals that, researchers predominantly favored datasets and benchmarks written in the

Java programming language. However, it’s essential to highlight that only 12 studies made

their datasets available for further use. Regarding the tools used for implementing RNN mod-

els, Pytorch stands as the most commonly used tool, closely followed by TensorFlow. However,

regarding the evaluation metrics, most studies used F-score, precision, and recall to assess the

performance of the implemented RNN models.

As a result of this study, several observations should be considered for future research using

RNN techniques for code clone detection:(1) No studies have investigated the potential of new

RNN architectures, such as parallel LSTM, sentence-level LSTM, and Tree-Structured GRU,

within the field of code clone research. (2) Only two studies have used RNN techniques to detect

semantic clones across diverse programming languages. (3) Only two studies have used RNN

techniques to identify semantic similarity among binary code fragments. (4) Only one study has

used a combination of PDG and AST to represent code fragments. (5) Manually validated

benchmarks are lacking for programming languages like Python, Scratch, and C#. Furthermore,

there is a scarcity of manually validated benchmarks encompassing array of programming lan-

guages. (6) The DFS technique [31] (S19) demonstrated superior performance on both bench-

marks in terms of precision, recall, and F1-score, achieving F1-scores of 97.9% and 99.4%,

respectively. Following closely, ASTNN [47] F1-scores of 93.8% and 95.5% on the BigClone-

Bench and OJClone benchmarks, respectively. Conversely, CDPU [60] (S14) and PBCS [48]

(S1) exhibited the lowest performance levels in precision, recall, and F1-score on both bench-

marks when compared to other techniques. It is worth noting that Study (S4), which utilized

OLSTM, delivered the most impressive results among the detection techniques, attaining an

impressive F-score of 98.04% when applied to open-source datasets sourced from diverse pro-

gramming language applications. The utilization of RNN techniques for code clone detection is

a promising field requiring further research. Consequently, it is crucial to invest more research

efforts into implementing RNN-based techniques to address the challenge of code clone detec-

tion. Our analysis presents the current state of this research, furnishing vital insights for devel-

opers, researchers, and stakeholders. We anticipate that these findings will inspire future

advancements in the field of code clone detection through the application of RNN techniques.

Supporting information

S1 File. PRISMA checklist for systematic review process.

(DOC)

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 34 / 40

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296858.s001
https://doi.org/10.1371/journal.pone.0296858

S1 Appendix. List of relevant studies and quality assessment scores.

(PDF)

Acknowledgments

The authors express their gratitude for the support of University of Peshawar in the develop-

ment of this work.

Author Contributions

Conceptualization: Fahmi H. Quradaa, Sara Shahzad.

Formal analysis: Fahmi H. Quradaa, Sara Shahzad.

Investigation: Fahmi H. Quradaa, Rashad S. Almoqbily.

Methodology: Fahmi H. Quradaa, Sara Shahzad.

Project administration: Sara Shahzad.

Validation: Fahmi H. Quradaa, Sara Shahzad, Rashad S. Almoqbily.

Writing – original draft: Fahmi H. Quradaa.

Writing – review & editing: Fahmi H. Quradaa, Rashad S. Almoqbily.

References

1. Fowler M. Refactoring: improving the design of existing code: Addison-Wesley Longman Publishing

Co., Inc.; 2018.

2. Gharehyazie M, Ray B, Filkov V, editors. Some from here, some from there: Cross-Project code reuse

in github. 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR);

2017 20–21 May 2017.

3. Azeem MI, Palomba F, Shi L, Wang Q. Machine learning techniques for code smell detection: A sys-

tematic literature review and meta-analysis. Information and Software Technology. 2019; 108:115–38.

4. White M, Tufano M, Vendome C, Poshyvanyk D, editors. Deep learning code fragments for code

clone detection. 2016 31st IEEE/ACM International Conference on Automated Software Engineering

(ASE); 2016 3–7 Sept. 2016.

5. Saca MA, editor Refactoring improving the design of existing code. 2017 IEEE 37th Central America

and Panama Convention (CONCAPAN XXXVII); 2017 15–17 Nov. 2017.

6. Rattan D, Bhatia R, Singh M. Software clone detection: A systematic review. Information and Software

Technology. 2013; 55(7):1165–99.

7. Roy CK, Cordy JRJQsSoCT. A survey on software clone detection research. 2007; 541(115):64–8.

8. Ain QU, Butt WH, Anwar MW, Azam F, Maqbool B. A Systematic Review on Code Clone Detection.

IEEE Access. 2019; 7:86121–44.

9. Shobha G, Rana A, Kansal V, Tanwar S, editors. Code clone detection—A systematic review. Emerg-

ing Technologies in Data Mining and Information Security; 2021 2021//; Singapore: Springer Nature

Singapore.

10. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: Sanjoy D,

David M, editors. Proceedings of the 30th International Conference on Machine Learning; Proceedings

of Machine Learning Research: PMLR; 2013. p. 1310–8.

11. Sutskever I, Vinyals O, Le Q. Sequence to sequence learning with neural networks. 2014; 27.

12. Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural networks. In: Eric

PX, Tony J, editors. Proceedings of the 31st International Conference on Machine Learning; Proceed-

ings of Machine Learning Research: PMLR; 2014. p. 1764–72.

13. Graves A. Offline arabic handwriting recognition with multidimensional recurrent neural networks. In:

Märgner V, El Abed H, editors. Guide to OCR for Arabic Scripts. London: Springer London; 2012. p.

297–313.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 35 / 40

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296858.s002
https://doi.org/10.1371/journal.pone.0296858

14. Lei M, Li H, Li J, Aundhkar N, Kim D-KJJoS, Software. Deep learning application on code clone detec-

tion: A review of current knowledge. Journal of Systems and Software. 2022; 184:111141.

15. Manpreet K, Dhavleesh R. A systematic literature review on the use of machine learning in code clone

research. Computer Science Review. 2023; 47:100528.

16. Graves A. Supervised sequence labelling. In: Graves A, editor. Supervised Sequence Labelling with

Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 5–13.

17. Al-Shaaby A, Aljamaan H, Alshayeb M. Bad smell detection using machine learning techniques: A sys-

tematic literature review. Arabian Journal for Science and Engineering. 2020; 45(4):2341–69.

18. Alazba A, Aljamaan H, Alshayeb M. Deep learning approaches for bad smell detection: a systematic

literature review. Empirical Software Engineering. 2023; 28(3):77.

19. Zakeri-Nasrabadi M, Parsa S, Ramezani M, Roy C, Ekhtiarzadeh M. A systematic literature review on

source code similarity measurement and clone detection: Techniques, applications, and challenges.

Journal of Systems and Software. 2023; 204:111796.

20. Kitchenham BA, Charters S. Guidelines for performing systematic literature reviews in software engi-

neering. 2007. Report No.: Tecnical Report EBSE 2007–001, Keele University and Durham University

Joint Report

21. Yu H, Lam W, Chen L, Li G, Xie T, Wang Q, editors. Neural detection of semantic code clones via tree-

based convolution. 2019 IEEE/ACM 27th International Conference on Program Comprehension

(ICPC); 2019: IEEE.

22. Saini V, Farmahinifarahani F, Lu Y, Baldi P, Lopes CV. Oreo: Detection of clones in the twilight zone.

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering; Lake Buena Vista, FL, USA: Association for

Computing Machinery; 2018. p. 354–65.

23. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.

1986; 323(6088):533–6.

24. Graves A, Mohamed Ar, Hinton G, editors. Speech recognition with deep recurrent neural networks.

2013 IEEE International Conference on Acoustics, Speech and Signal Processing; 2013 26–31 May

2013.

25. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Transactions on Signal Pro-

cessing. 1997; 45(11):2673–81.

26. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997; 9(8):1735–80.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

27. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neu-

ral network architectures. Neural Networks. 2005; 18(5):602–10. https://doi.org/10.1016/j.neunet.

2005.06.042 PMID: 16112549

28. Tai KS, Socher R, Manning C. Improved semantic representations from tree-structured Long Short-

Term Memory networks2015 February 01, 2015:[arXiv:1503.00075 p.]. Available from: https://ui.

adsabs.harvard.edu/abs/2015arXiv150300075T.

29. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural

Computation. 2000; 12(10):2451–71. https://doi.org/10.1162/089976600300015015 PMID: 11032042

30. Graves A, Jaitly N, Mohamed Ar, editors. Hybrid speech recognition with deep bidirectional LSTM.

2013 IEEE Workshop on Automatic Speech Recognition and Understanding; 2013 8–12 Dec. 2013.

31. Jiang Y, Su X, Treude C, Wang T. Hierarchical semantic-aware neural code representation. Journal of

Systems and Software. 2022; 191:111355.

32. Mikolov T, Joulin A, Chopra S, Mathieu M, Ranzato MA. Learning longer memory in recurrent neural

networks. 2014.

33. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase

representations using RNN encoder-decoder for statistical machine translation. 2014.

34. Shen G, Tan Q, Zhang H, Zeng P, Xu J. Deep learning with gated recurrent unit networks for financial

sequence predictions. Procedia Computer Science. 2018; 131:895–903.

35. Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M. Lessons from applying the systematic liter-

ature review process within the software engineering domain. Journal of Systems and Software. 2007;

80(4):571–83.

36. Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature

reviews in software engineering–A systematic literature review. Information and Software Technology.

2009; 51(1):7–15.

37. Petersen K, Vakkalanka S, Kuzniarz L. Guidelines for conducting systematic mapping studies in soft-

ware engineering: An update. Information and Software Technology. 2015; 64:1–18.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 36 / 40

https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
https://ui.adsabs.harvard.edu/abs/2015arXiv150300075T
https://ui.adsabs.harvard.edu/abs/2015arXiv150300075T
https://doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
https://doi.org/10.1371/journal.pone.0296858

38. Vilela J, Castro J, Martins LEG, Gorschek T. Integration between requirements engineering and safety

analysis: A systematic literature review. Journal of Systems and Software. 2017; 125:68–92.

39. Gasparic M, Janes A. What recommendation systems for software engineering recommend: A sys-

tematic literature review. Journal of Systems and Software. 2016; 113:101–13.

40. Tarhan A, Giray G. On the use of ontologies in software process assessment: A systematic literature

review. 2017.

41. Khan SU, Azeem MI. Intercultural challenges in offshore software development outsourcing relation-

ships: an exploratory study using a systematic literature review. 2014; 8(4):161–73.

42. Niazi M. Do systematic literature reviews outperform informal literature reviews in the software engi-

neering domain? An initial case study. Arabian Journal for Science and Engineering. 2015; 40(3):845–

55.

43. Wohlin C, editor Guidelines for snowballing in systematic literature studies and a replication in software

engineering. International Conference on Evaluation & Assessment in Software Engineering; 2014.

44. Dieste O, Padua AG, editors. Developing Search Strategies for Detecting Relevant Experiments for

Systematic Reviews. First International Symposium on Empirical Software Engineering and Measure-

ment (ESEM 2007); 2007 20–21 Sept. 2007.

45. Dybå T, Dingsøyr T. Empirical studies of agile software development: A systematic review. Information

and Software Technology. 2008; 50(9):833–59.

46. Singh S, Kaur S. A systematic literature review: Refactoring for disclosing code smells in object ori-

ented software. Ain Shams Engineering Journal. 2018; 9(4):2129–51.

47. Wen J, Li S, Lin Z, Hu Y, Huang C. Systematic literature review of machine learning based software

development effort estimation models. Information and Software Technology. 2012; 54(1):41–59.

48. Dong W, Feng Z, Wei H, Luo H, editors. A novel code stylometry-based code clone detection strategy.

2020 International Wireless Communications and Mobile Computing (IWCMC); 2020 15–19 June

2020.

49. Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. A novel neural source code representation based

on abstract syntax tree. Proceedings of the 41st International Conference on Software Engineering;

Montreal, Quebec, Canada: IEEE Press; 2019. p. 783–94.

50. Yang S, Cheng L, Zeng Y, Lang Z, Zhu H, Shi Z, editors. Asteria: Deep learning-based AST-encoding

for cross-platform binary code similarity detection. 2021 51st Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks (DSN); 2021 21–24 June 2021.

51. Tian D, Jia X, Ma R, Liu S, Liu W, Hu C. BinDeep: A deep learning approach to binary code similarity

detection. Expert Systems with Applications. 2021; 168:114348.

52. Ullah F, Naeem MR, Naeem H, Cheng X, Alazab M. CroLSSim: Cross-language software similarity

detector using hybrid approach of LSA-based AST-MDrep features and CNN-LSTM model. Interna-

tional Journal of Intelligent Systems. 2022; 37(9):5768–95.

53. Perez D, Chiba S. Cross-language clone detection by learning over abstract syntax trees. Proceedings

of the 16th International Conference on Mining Software Repositories; Montreal, Quebec, Canada:

IEEE Press; 2019. p. 518–28.

54. Tufano M, Watson C, Bavota G, Penta MD, White M, Poshyvanyk D, editors. Deep learning similarities

from different representations of source code. 2018 IEEE/ACM 15th International Conference on Min-

ing Software Repositories (MSR); 2018 27 May-3 June 2018.

55. Hua W, Sui Y, Wan Y, Liu G, Xu G. FCCA: Hybrid code representation for functional clone detection

using attention networks. IEEE Transactions on Reliability. 2021; 70(1):304–18.

56. Yuan Y, Kong W, Hou G, Hu Y, Watanabe M, Fukuda A, editors. From Local to Global Semantic Clone

Detection. 2019 6th International Conference on Dependable Systems and Their Applications (DSA);

2020 3–6 Jan. 2020.

57. Wang D, Yu Y, Li S, Dong W, Wang J, Qing L, editors. MulCode: A multi-task learning approach for

source code understanding. 2021 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER); 2021 9–12 March 2021.

58. Wang W, Li G, Shen S, Xia X, Jin Z. Modular Tree Network for Source Code Representation Learning.

2020; 29(4%J ACM Trans. Softw. Eng. Methodol.):Article 31.

59. Yasaswi J, Purini S, Jawahar CV, editors. Plagiarism detection in programming assignments using

deep features. 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR); 2017 26–29 Nov.

2017.

60. Wei H-H, Li M, editors. Positive and unlabeled learning for detecting software functional clones with

adversarial training. Proceedings of the 27th International Joint Conference on Artificial Intelligence

(IJCAI’18); 2018.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 37 / 40

https://doi.org/10.1371/journal.pone.0296858

61. Wu Y, Zou D, Dou S, Yang S, Yang W, Cheng F, et al. SCDetector: software functional clone detection

based on semantic tokens analysis. Proceedings of the 35th IEEE/ACM International Conference on

Automated Software Engineering; Virtual Event, Australia: Association for Computing Machinery;

2021. p. 821–33.

62. Zhang L, Feng Z, Ren W, Luo H, editors. Siamese-Based BiLSTM network for Scratch source code

similarity measuring. 2020 International Wireless Communications and Mobile Computing (IWCMC);

2020 15–19 June 2020.

63. Wei H-H, Li M, editors. Supervised deep features for software functional clone detection by exploiting

lexical and syntactical information in source code. Proceedings of the 26th International Joint Confer-

ence on Artificial Intelligence; 2017.

64. Sun H, Cui L, Li L, Ding Z, Hao Z, Cui J, et al. VDSimilar: Vulnerability detection based on code similar-

ity of vulnerabilities and patches. Computers & Security. 2021; 110:102417.

65. Ullah F, Naeem MR, Mostarda L, Shah SA. Clone detection in 5Genabled social IoT system using

graph semantics and deep learning model. International Journal of Machine Learning and Cybernet-

ics. 2021; 12(11):3115–27.

66. Hannay JE, Sjoberg DIK, Dyba T. A systematic review of theory use in software engineering experi-

ments. IEEE Transactions on Software Engineering. 2007; 33(2):87–107.

67. Jorgensen M, Shepperd M. A systematic review of software development cost estimation studies.

IEEE Transactions on Software Engineering. 2007; 33(1):33–53.

68. Walia GS, Carver JC. A systematic literature review to identify and classify software requirement

errors. Information and Software Technology. 2009; 51(7):1087–109.

69. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis: John Wiley &

Sons; 2021.

70. Yang Y, Xia X, Lo D, Grundy J. A survey on deep learning for software engineering. ACM Comput

Surv. 2022; 54(10s).

71. Wan Y, Shu J, Sui Y, Xu G, Zhao Z, Wu J, et al., editors. Multi-modal attention network learning for

semantic source code retrieval. 2019 34th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE); 2019 11–15 Nov. 2019.

72. Selim GMK, Foo KC, Zou Y, editors. Enhancing source-based clone detection using intermediate

representation. 2010 17th Working Conference on Reverse Engineering; 2010 13–16 Oct. 2010.

73. Svajlenko J, Islam JF, Keivanloo I, Roy CK, Mia MM, editors. Towards a big data curated benchmark

of inter-project code clones. 2014 IEEE International Conference on Software Maintenance and Evolu-

tion; 2014 29 Sept.-3 Oct. 2014.

74. Mou L, Li G, Zhang L, Wang T, Jin Z. Convolutional neural networks over tree structures for program-

ming language processing. Proceedings of the AAAI Conference on Artificial Intelligence. 2016; 30(1).

75. Google Code Jam 2023 [cited 09-03-2023. Available from: https://codingcompetitions.withgoogle.

com/codejam.

76. Subramanian V. Deep Learning with PyTorch: A practical approach to building neural network models

using PyTorch: Packt Publishing Ltd; 2018.

77. Ketkar N. Introduction to PyTorch. In: Ketkar N, editor. Deep Learning with Python: A Hands-on Intro-

duction. Berkeley, CA: Apress; 2017. p. 195–208.

78. Fao Chollet. Keras: GitHub; 2015 [cited 04-03-2023. Available from: https://github.com/fchollet/keras.

79. TensorFlow: An open-source software library for machine intelligence 2021 [cited 03-03-2023. Avail-

able from: https://www.tensorflow.org.

80. Mikolov T, Kombrink S, Deoras A, Burget L, Cernocky J, editors. Rnnlm-recurrent neural network lan-

guage modeling toolkit. Proc of the 2011 ASRU Workshop; 2011.

81. Ivanciuc O. Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top

Med Chem. 2008; 8(18):1691–709. https://doi.org/10.2174/156802608786786589 PMID: 19075775

82. Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV. SourcererCC: scaling code clone detection to big-

code. Proceedings of the 38th International Conference on Software Engineering; Austin, Texas:

Association for Computing Machinery; 2016. p. 1157–68.

83. Jiang L, Misherghi G, Su Z, Glondu S, editors. DECKARD: Scalable and Accurate Tree-Based Detec-

tion of Code Clones. 29th International Conference on Software Engineering (ICSE’07); 2007 20–26

May 2007.

84. Büch L, Andrzejak A, editors. Learning-based recursive aggregation of abstract syntax trees for code

clone detection. 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reen-

gineering (SANER); 2019 24–27 Feb. 2019.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 38 / 40

https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/codejam
https://github.com/fchollet/keras
https://www.tensorflow.org
https://doi.org/10.2174/156802608786786589
http://www.ncbi.nlm.nih.gov/pubmed/19075775
https://doi.org/10.1371/journal.pone.0296858

85. Zhao G, Huang J. DeepSim: Deep learning code functional similarity. Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering; Lake Buena Vista, FL, USA: Association for Computing Machinery;

2018. p. 141–51.

86. Chen Y. Convolutional neural network for sentence classification: University of Waterloo; 2015.

87. Liang Y, Zhu K. Automatic Generation of Text Descriptive Comments for Code Blocks. Proceedings of

the AAAI Conference on Artificial Intelligence. 2018; 32(1).

88. Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks2015 November 01,

2015:[arXiv:1511.05493 p.]. Available from: https://ui.adsabs.harvard.edu/abs/

2015arXiv151105493L.

89. Plessis MD, Niu G, Sugiyama M. Convex Formulation for Learning from Positive and Unlabeled Data.

In: Francis B, David B, editors. Proceedings of the 32nd International Conference on Machine Learn-

ing; Proceedings of Machine Learning Research: PMLR; 2015. p. 1386–94.

90. Fang C, Liu Z, Shi Y, Huang J, Shi Q. Functional code clone detection with syntax and semantics

fusion learning. Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing

and Analysis; Virtual Event, USA: Association for Computing Machinery; 2020. p. 516–27.

91. Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, et al. CodeBERT: A pre-trained model for program-

ming and natural languages2020 February 01, 2020:[arXiv:2002.08155 p.]. Available from: https://ui.

adsabs.harvard.edu/abs/2020arXiv200208155F.

92. Guo D, Ren S, Lu S, Feng Z, Tang D, Liu S, et al. GraphCodeBERT: pre-training code representations

with data flow2020 September 01, 2020:[arXiv:2009.08366 p.]. Available from: https://ui.adsabs.

harvard.edu/abs/2020arXiv200908366G.

93. Mueller J, Thyagarajan A. Siamese recurrent architectures for learning sentence similarity. Proceed-

ings of the Thirtieth AAAI Conference on Artificial Intelligence; Phoenix, Arizona: AAAI Press; 2016.

P. 2786–92.

94. BROMLEY J, BENTZ JW, BOTTOU L, GUYON I, LECUN Y, MOORE C, et al. Signature verification

using a “siamese” time delay neural network. 1993; 07(04):669–88.

95. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning:

concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data. 2021; 8

(1):1–74.

96. Hall T, Beecham S, Bowes D, Gray D, Counsell S. Developing fault-prediction models: What the

research can show industry. IEEE Software. 2011; 28(6):96–9.

97. Devijver PA, Kittler J. Pattern recognition theory and applications: Springer Science & Business

Media; 2012.

98. Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solu-

tions. 1998; 06(02):107–16.

99. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult.

IEEE Transactions on Neural Networks. 1994; 5(2):157–66. https://doi.org/10.1109/72.279181 PMID:

18267787

100. Meng Y, Liu L. A Deep Learning Approach for a Source Code Detection Model Using Self-Attention.

Complexity. 2020; 2020:5027198.

101. Bouaziz M, Morchid M, Dufour R, Linarès G, Mori RD, editors. Parallel Long Short-Term Memory for

multi-stream classification. 2016 IEEE Spoken Language Technology Workshop (SLT); 2016 13–16

Dec. 2016.

102. Zhang Y, Liu Q, Song L. Sentence-state LSTM for text representation2018 May 01, 2018:

[arXiv:1805.02474 p.]. Available from: https://ui.adsabs.harvard.edu/abs/2018arXiv180502474Z.

103. Demotte P, Senevirathne L, Karunanayake B, Munasinghe U, Ranathunga S, editors. Sentiment anal-

ysis of sinhala news comments using sentence-state LSTM networks. 2020 Moratuwa Engineering

Research Conference (MERCon); 2020 28–30 July 2020.

104. Cao Y, Sun Z, Li L, Mo W. A study of sentiment analysis algorithms for agricultural product reviews

based on improved BERT model. 2022; 14(8):1604.

105. Kuta M, Morawiec M, Kitowski J, editors. Sentiment analysis with tree-structured gated recurrent units.

Text, Speech, and Dialogue; 2017 2017//; Cham: Springer International Publishing.

106. Ragkhitwetsagul C, Krinke J, editors. Using compilation/decompilation to enhance clone detection.

2017 IEEE 11th International Workshop on Software Clones (IWSC); 2017 21–21 Feb. 2017.

107. Kononenko O, Zhang C, Godfrey MW, editors. Compiling clones: What happens? 2014 IEEE Interna-

tional Conference on Software Maintenance and Evolution; 2014 29 Sept.-3 Oct. 2014.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 39 / 40

https://ui.adsabs.harvard.edu/abs/2015arXiv151105493L
https://ui.adsabs.harvard.edu/abs/2015arXiv151105493L
https://ui.adsabs.harvard.edu/abs/2020arXiv200208155F
https://ui.adsabs.harvard.edu/abs/2020arXiv200208155F
https://ui.adsabs.harvard.edu/abs/2020arXiv200908366G
https://ui.adsabs.harvard.edu/abs/2020arXiv200908366G
https://doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
https://ui.adsabs.harvard.edu/abs/2018arXiv180502474Z
https://doi.org/10.1371/journal.pone.0296858

108. Schäfer A, Amme W, Heinze TS, editors. Stubber: Compiling source code into Bytecode without

dependencies for Java code clone detection. 2021 IEEE 15th International Workshop on Software

Clones (IWSC); 2021 2–2 Oct. 2021.

109. Chirodea MC, Novac OC, Novac CM, Bizon N, Oproescu M, Gordan CE, editors. Comparison of Ten-

sorflow and PyTorch in convolutional neural network—based applications. 2021 13th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI); 2021 1–3 July 2021.

110. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, et al. MXNet: A flexible and efficient machine learning

library for heterogeneous distributed systems2015 December 01, 2015:[arXiv:1512.01274 p.]. Avail-

able from: https://ui.adsabs.harvard.edu/abs/2015arXiv151201274C.

111. Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, et al. Theano: A Python

framework for fast computation of mathematical expressions2016 May 01, 2016:[arXiv:1605.02688

p.]. Available from: https://ui.adsabs.harvard.edu/abs/2016arXiv160502688T.

112. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score

and accuracy in binary classification evaluation. BMC Genomics. 2020; 21(1):6. https://doi.org/10.

1186/s12864-019-6413-7 PMID: 31898477

113. Melo F. Area under the ROC curve. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H, editors.

Encyclopedia of Systems Biology. New York, NY: Springer New York; 2013. p. 38–9.

114. Nguyen-Duc A, Cruzes DS, Conradi R. The impact of global dispersion on coordination, team perfor-

mance and software quality–A systematic literature review. Information and Software Technology.

2015; 57:277–94.

PLOS ONE Recurrent neural networks applications in code clone detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0296858 February 2, 2024 40 / 40

https://ui.adsabs.harvard.edu/abs/2015arXiv151201274C
https://ui.adsabs.harvard.edu/abs/2016arXiv160502688T
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
https://doi.org/10.1371/journal.pone.0296858

